Department of Mathematics and Statistics
Stochastic processes on domains

Suggestions to excercise problem sheet 3

1. Suppose 73 and 7y are (F+)-stopping times and 71 < 75. Show that ﬂ_r;r CZ_+.

2
Suggestion. There was an unfortunate misprint and the essential assumption 7 <

Ty Was missing.

With this assumption, the proof might go as follows. Suppose A € ﬁﬁ. Then
we know that for every ¢ > 0 the event {7 <t, A} € F+.

Since 7 < Ty, we have that {m < t,» <t} D {7 < t}. The other inclusion
holds always, and so the events {my <t ,m <t} = {m <t}. Therefore,

{A,TQ S t} = {A,Tl S t} N {7’2 S t}.
Since 7y is (#+)-stopping time, we have that {m, <t} € Z+ and so
{A77—2 S t} - ﬁjﬁ

for every t. This, however, means that A € 337; and the claim follows.

2. Let X be a positive and integrable random variable. Show that the family
{Y: |Y|] < X } is uniformly integrable. (Hint: estimate |Y|[|Y| > m] from
above by random variable depending only on X and m).

Suggestion. Let’s denote the set { YV : |Y| < X } with € and let’s follow the hint
by estimating |Y|[|Y| > m] from above. Let Y € €. Since |Y| < X, we have

EY|[|Y]|>m] <EX[|Y]|>m].
Since |Y| < X, then [|Y| >m]| <[X > m]. This implies that

EY|[IY|>m] <EX[X >m].
Since this holds for every Y € € we obtain

supE|Y|[|Y]>m] <EX[X >m]
Ye¥



and therefore,

limsupsup E Y[ |Y]| >m]| <limsupE X[X > m].
m—oo Ye¥ m—»00

Since X[ X >m] < X and X[ X > m] — 0 almost surely, we have by the Lebesgue

Dominated Convergence theorem that

limsupEX[X >m] =0

m—00

and therefore the claim follows.

3. Assume that E X? < M for every n. Show that { X,,: n € N } is uniformly
integrable. (Hint: |X,,|m < X2 when |X,| > m.)

Suggestion. Let’s denote ¢ = { X,,: EX2? < M }. Now we have by the hint
above that

1 1
E[X,|[| Xy > m] = —E[Xu|m[|X,] > m] < —EX7[|X,] > m]
m m
Since E X2[|X,| > m] <E X2 < M, we have obtained an upper bound

sup E [X,|[|X.] > m]

<=
Xn€7 m
This implies the claim, since % — 0 when m — oo.
Note that we didn’t actually need the countability of the set € so we could have
used € = { X : EX? < M } equally well. Furthermore, the second power is not

essential, since if 6, = { X : E|X|P < M }, then the same proof idea gives that
E|X|[|X]>m] =m PE[X|m"'[|X] > m] < Mm'™.

This means that %, is uniformly integrable for every p > 1 but the technique fails
when p < 1. However, just above p = 1 we are fine since 6, = { X : EX ¢(X) <
M 1} is uniformly integrable, as long as ¢ 1 oo, so for instance rather slowly increasing
function ¢(z) = [z > e |logloglogx works equally well. For instance ¢(107%) =
3loglog 10° = 3 x 3log 103 = 27 log 10 < 65.

4. Assume X,, — X in almost surely and { X,,: n € N } is uniformly integrable.
Show that X, — X in L'-sense. (Hint: let ¢, (z) = z[|z| < n]+n[z >n]—n[z <



—n] and write X;—X = (Xp—¢n (X)) — (X =00 (X)) +(0n(Xi) —0n(X)) = L1i+1o+15
and estimate term I; each separetely).

Suggestion. Let’s try to follow the hint. This means that
E|X, — X| <E|L(n k)| + E|l1(n)| +E|I5(n,k)|.

The third term is something that vanishes for fized n, since |¢,(X%) — ¢n(X)| < 2n
is bounded and |¢, (X)) — ¢n(X)| — 0 almost surely, as k — oo. Therefore,

lim E |I;(n, k)| =0
k—o0

for every fixed n.

The first term is handled with uniform integrability, since
(11 (n, k)| < | Xk| [1Xk| > 7]
and so for every large enough n, say n > n;, we have
sng |I1(n, k)| <e.
The second term can again be estimated as
[L2(n)| < | X[ [1X]>n]

and if we can verify that E | X| < oo, then for every n large enough, say n > ny, we
would have
E ’[2(71, k)’ S E.

So once we have verified that X is integrable, then by choosing n = n; V ny, we have
for every k that

or
limsup E | X} — X| < 2e.

k—oo
So the claim follows if we can verify that X is integrable. For this we use Fatou’s

lemma, which says that

E|X| <liminfE|X,| =supinf E|X,| <supE|X,|
n—00 n>1k2>n n>1



The term on the right is bounded from above by the uniform integrability, since
suppose
sup B |X,|[[X,] > M] <1

for some M. Then
E|X,| =E|X,|[|X.] <M]+E|X,|[|X.] >M] <M+1

and therefore,
E|X| <swE|X,| <M +1.

So X is integrable, which finishes the proof.

5. Let X; = B;ss be a stopped 1-dimensional Brownian motion at time instance
s € (0,00) (i.e. at constant stopping time). Show that X; = E (X, |.%) for every
t € (0,00) and deduce that X is uniformly integrable martingale. (Corrected Hint:
X, and — X, are supermartingales if X is a martingale, see Lemma 5.2. and Theorem
5.3.)

Suggestion. Let’s verify that X is a martingale that satisfies X; = E (X« | .%) .
This we have done already in Excercise sheet 2 Problem 8. provided we show that

X 1s integrable. But since
E|X,| =E|B| <

the martingale property follows form the Excercise sheet 2 Problem 8. Another way
would have been the direct computation or using Lemma 5.2.

Next we want to show X is uniformly integrable which shows that a Brownian
motion which is stopped at a constant time is uniformly integrable and therefore
shows that Brownian motion is also a local martingale. The same proof shows that
every martingale is a local martingale.

This follows from the formulation of Theorem 5.3. for martingales which are both
supermartingales and submartingales. Than one of the claims would be that X is
uniformly integrable martingale if and only if X; = E (X |.%;) for some integrable
random variable X .. But let’s verify this claim in detail, since it is not in the lecture
notes.

Since X is a martingale, X is also a supermartingale and therefore,

Xt_:E(XooLgat)_SE (Xo_olyt>



by Jensen’s inequality. Furthermore, ¥ = —X is a martingale and hence a super-
martingale with

Y, <E (Yol %)
Now The 5.3. says that both ¢ :={ X; : t >0} and ¢, :={Y, : t >0} are
uniformly integrable. However, since (—z)” = [—2 < 0](— —z) =[x > 0]z = 2™,
we therefore have ¥;~ = X;" and so ¢, := { X;": t > 0 }. This, however, implies
that € := { Xy : ¢ >0 } is uniformly integrable, since

E|X)[|X:]>K] =EX[X)>K] +EX, [X; >K]| <¢

when K is large enough.

6. Define

—_

_ (@—y)? (a+y)?

(6 3t — e 2t

po(t,z,y) =

g

27
for every t > 0, and z,y € R and z,y > 0. Verify that

Opo(t,x,y) = 20po(t,x,y) and po(t,0,y) =0

for every ¢ > 0 and z,y > 0. This is the transition probability density function of
1-dimensional killed BM which is killed at zero.
Suggestion. Let’s rewrite po(t,z,y) = q(t,y — z) — q(t,y + =) where q(t,y) =
(2mt) /2 exp(—1/(2t)y?). Now we will first test the initial value condition pq(t,0,) =
0 first. Since

po(t,0,y) = q(t,y —0) —q(t,y +0) =0
this follows immediately. Now we need to do the differentiation. Since ¢(t,y) is
positive, we can compute its logarithm r = log ¢ and

2
Y
r(t,y) = —3log(2m) — 5 logt — 57

Now 0;q = q0O,r, so
Qiq(t,y) = 5q(t,y)(—t +y*t7?)
In the same way

Ayq(t,y) = 3q(t,y) 2yt~ = q(t,y)yt ™"

The second derivative is then

D2q(t,y) =yt Dyq(t,y) + q(t, )t~ = (P72 + 17 )glt,y) = 20i(t, y)



or 0,q = %83(]. Using this we get the original claim, but to make it easier to follow,
let’s denote 0,q = 01q and 8§q = 02q, which then denote the derivative with respect
to first and second variable.

Therefore,

8tp0(t7 T, y) = atQ(tv Yy — ZL‘) - atQ(t7 Y+ l’) = (alq)(tv Yy— l’) - (aquta Y+ ZE)
= 3(039)(t,y — =) — 5(03q)(t,y + )

and on the other hand

Oypo(t, z,y) = 9y(0aq)(t,y — x) — 9,(0aq)(t,y + @) = (5)(t,y — x) — (0q)(t,y + )

so comparing the right-hand side we get the claim.

Note that if we would have used py(t, z,y) = ¢(t,z —y) — q(t, 2 + y) formulation,
then Oypo(t, x,y) = —(02q)(t,x — y) — (02q)(x + y) but the second derivative would
have changed the sign back, since —0,(02q)(t,z —y) = (02q)(t, z — y).

7. Let 7 be a simple stopping time, say 7 € {t;,...,t,}. Show that X, is Z,-
measurable and %, = % +.

Suggestion. Let U = {X, € A}.

we see that U € .Z.+. But since A is arbitrary, X, is .#.+-measurable. The second

claim is valid for every 7, since since if A € .%,, then
{A,T S t} S yt C ﬁt‘F

and if A € .7+, then
{A,Tgt} Gﬁt+ Cﬁt

by right-continuity.
8. Let s <t < w and 7 a stopping time. Show that
E([r>t](X,—Xy)|F) <0

(Hint: You can use the fact that E (Z7|.) = E (E (Z|¥9) |.2) for every o-
algebras ## C ¢ and then you can apply the supermartingale property).



Suggestion. Since s < t, we have that .%, C .%; and so
E ([7>t](Xy - X)) [ .7) =E (E ([7 > t](Xu = Xo) | F) [ F) .
Since [7 > t] is F+ = F-measurable, we have
E([r>t](Xy—X)|FH) =[7>tE (X, —Xi| %) <0
by the supermartingale property. Therefore,
E ([r>t](Xu— X)) | Z,) =E (B (7 > t](X, — X,)| ) | 7,) <0

as well.

9. Let 7 and be a simple stopping time, say 7 € {t1,...,t,}. Let us assume that
s=1p <t <ty <--- <t Show that and

E (X,|7,) < X,.

(Hint: show

n—1
X, — X, = Z[T > tk](th+1 - Xi,)
k=0

and use this identity with Problem 8.)
Suggestion. Suppose we have shown the identity of the hint. Then

E (X, - X,| %) ZE<T>tk (Xipy — Xo) | Z) <0

since using s = s, t = {3 and u = {1 we have exactly the case of Problem 8. But

hen the claim follows, since
E (X,| %) =X, +E (X, - X,| %) <X,

where we used that X, is .#,-measurable. So we only need to show the identity.

Since 7 is simple stopping time, we can write

n n k—1
XT - XS = Z[T = tk](th - Xto) = Z[T = tk] Z(th-H - th)
k=0 k=1 =0

where we wrote the difference as a telescoping sum. Let’s change the order of sum-
mations and we get

n—1

Z Z T =) (Xyy, — Xy).



Since
n

k_Z (7 =te] = [7 € {tjsrs. . tu}] = [T > tin] = [T > t;]

the claim follows.

10. Let X, = esB~5"1/2_ Show that it is a martingale with respect to the history of

Brownian motion. Hint: you are on right track if you have arrived to
E (Xu|#) = *Bie= s U2 o Pu-t

Suggestion. First we verify that X is adapted, but this is evident, since X; = f(B;)
for f(x) = ese~5"t/2 which is continuous function.

Next we want to make sure that X; is integrable. Since X; > 0, we have

—s? —z? 12 212
EO Xt — Ct/ eSS 75/26 = /2t dr = Ct/ e 2t(z 2stx+s2t )dl'
R R

m2
:ct/e%dle
R

which also shows that the mean is constant, show we might have a martingale. But

to verify that let’s compute the conditional expectation
Eo(X, | %) =B "v/2E, (BS(B“_Bt) |¢%) = ¢*Bte=5"u/2F sBu—t

. . . . 2
since B, — B is independent from %, and B, — B; ~ B,_;. Since e*Bt = X5t/
we have

Eo(X.|Z:) = Xe "By et Pt = X B Xy = Xy

since the mean is 1.

11. Let 7, = inf{ t > 0: B; = a } be the first hitting time of 1-dimensional
Brownian motion to the point a. Let a < z < b and X, = B{*"™. Show that X, is a
bounded martingale for every x € (a,b) where x is the starting point of X.

Suggestion. Let’s verify first that X is bounded, i.e. we want to show that
sup|X;| <M
t

almost surely. When ¢t < 7, we know that B; has to be between a and b, since By is.

Therefore, when Xy = x we have

sup|X;| <M

t<t



almost surely where M = |a| V |b|]. When ¢t > 7, then either X; = a or X; = b, and
S0
suplX;| < M
t

almost surely.

Furthermore, the Lemma 5.9. says that X” = B ™\ ig a martingale for every
bounded stopping time v, since B is right-continuous martingale and 7, A 7, A v is
a bounded stopping time. Since X" is a bounded martingale, we have by Optional
Stopping Theorem that

E. X, =E, X] =E, Xj

and hence Lemma 5.2. says that X is martingale itself.

12. Assume the same as in 11. Show that
aP, (1o <m) +0P (1 <7y) ==z

and show that )
P.(ra<m) = b:Z =1-P,(rua>mn).

(Hint: Optional Stopping Theorem for a bounded martingale. For the latter explain

first why P, (7, = 7, ) = 0 and then you have two equations for the probabilities).
Suggestion. We know that X = B™"™ is a bounded martingale for every starting
point z € (a,b) by Problem 11. Therefore, we can use the Optional Stopping Theorem
and we get that

E, X ar, =E;. Xo = 2.

This means that
r=E; B, =aP, (1, <7)+bP, (7, <7,) +00P, (7, =7 =00)

since 7, = T, < oo cannot happen, since Brownian motion cannot be at the two
places at the same time. The third option must vanish, since left-hand side is finite.
This verifies the first claim.

Also the vanishing of the third term implies P, (7, = 7,) = 0 and so
P.(ra<m) +Pu(mm<m)=1

Now we have two equations
pa+qb==x
ptqg=1



where p =P, (7, <7 ) and ¢ = P, (7, < 7, ) which has a unique solution

_b—:z:

p_b—a

r—a
q:

b—a



