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Suggestions to excercise problem sheet 3

1. Suppose τ1 and τ2 are (Ft+)-stopping times and τ1 ≤ τ2. Show that Fτ+
1
⊂ Fτ+

2
.

Suggestion. There was an unfortunate misprint and the essential assumption τ1 ≤
τ2 was missing.

With this assumption, the proof might go as follows. Suppose A ∈ Fτ+
1

. Then

we know that for every t > 0 the event {τ1 ≤ t, A} ∈ Ft+ .

Since τ1 ≤ τ2, we have that {τ1 ≤ t, τ2 ≤ t} ⊃ {τ2 ≤ t}. The other inclusion

holds always, and so the events {τ1 ≤ t, τ2 ≤ t} = {τ2 ≤ t}. Therefore,

{A, τ2 ≤ t} = {A, τ1 ≤ t} ∩ {τ2 ≤ t}.

Since τ2 is (Ft+)-stopping time, we have that {τ2 ≤ t} ∈ Ft+ and so

{A, τ2 ≤ t} ∈ Ft+

for every t. This, however, means that A ∈ Fτ+
2

and the claim follows.

2. Let X be a positive and integrable random variable. Show that the family

{ Y : |Y | ≤ X } is uniformly integrable. (Hint: estimate |Y |[ |Y | > m ] from

above by random variable depending only on X and m).

Suggestion. Let’s denote the set { Y : |Y | ≤ X } with C and let’s follow the hint

by estimating |Y |[ |Y | > m ] from above. Let Y ∈ C . Since |Y | ≤ X, we have

E |Y |[ |Y | > m ] ≤ EX[ |Y | > m ] .

Since |Y | ≤ X, then [ |Y | > m ] ≤ [X > m ]. This implies that

E |Y |[ |Y | > m ] ≤ EX[X > m ] .

Since this holds for every Y ∈ C we obtain

sup
Y ∈C

E |Y |[ |Y | > m ] ≤ EX[X > m ]



and therefore,

lim sup
m→∞

sup
Y ∈C

E |Y |[ |Y | > m ] ≤ lim sup
m→∞

EX[X > m ] .

Since X[X > m ] ≤ X and X[X > m ]→ 0 almost surely, we have by the Lebesgue

Dominated Convergence theorem that

lim sup
m→∞

EX[X > m ] = 0

and therefore the claim follows.

3. Assume that EX2
n ≤ M for every n. Show that { Xn : n ∈ N } is uniformly

integrable. (Hint: |Xn|m ≤ X2
n when |Xn| ≥ m.)

Suggestion. Let’s denote C = { Xn : EX2
n ≤ M }. Now we have by the hint

above that

E |Xn|[ |Xn| > m ] = 1
m

E |Xn|m[ |Xn| > m ] ≤ 1
m

EX2
n[ |Xn| > m ]

Since EX2
n[ |Xn| > m ] ≤ EX2

n ≤M , we have obtained an upper bound

sup
Xn∈C

E |Xn|[ |Xn| > m ] ≤ M

m
.

This implies the claim, since M
m
→ 0 when m→∞.

Note that we didn’t actually need the countability of the set C so we could have

used C = { X : EX 2 ≤ M } equally well. Furthermore, the second power is not

essential, since if Cp = { X : E |X|p ≤M }, then the same proof idea gives that

E |X|[ |X| > m ] = m1−pE |X|mp−1[ |X| > m ] ≤Mm1−p.

This means that Cp is uniformly integrable for every p > 1 but the technique fails

when p ≤ 1. However, just above p = 1 we are fine since Cφ = { X : EX φ(X) ≤
M } is uniformly integrable, as long as φ ↑ ∞, so for instance rather slowly increasing

function φ(x) = [ x > ee
e ] log log log x works equally well. For instance φ(10729) =

3 log log 109 = 3 ∗ 3 log 103 = 27 log 10 ≤ 65.

4. Assume Xn → X in almost surely and { Xn : n ∈ N } is uniformly integrable.

Show that Xn → X in L1-sense. (Hint: let φn(x) = x[ |x| ≤ n ] + n[ x > n ]− n[ x <



−n ] and writeXk−X = (Xk−φn(Xk))−(X−φn(X))+(φn(Xk)−φn(X)) = I1+I2+I3

and estimate term Ij each separetely).

Suggestion. Let’s try to follow the hint. This means that

E |Xk −X| ≤ E |I1(n, k)| + E |I2(n)| + E |I3(n, k)| .

The third term is something that vanishes for fixed n, since |φn(Xk)− φn(X)| ≤ 2n
is bounded and |φn(Xk)− φn(X)| → 0 almost surely, as k →∞. Therefore,

lim
k→∞

E |I3(n, k)| = 0

for every fixed n.

The first term is handled with uniform integrability, since

|I1(n, k)| ≤ |Xk| [ |Xk| > n ]

and so for every large enough n, say n ≥ n1, we have

sup
k

E |I1(n, k)| ≤ ε.

The second term can again be estimated as

|I2(n)| ≤ |X| [ |X| > n ]

and if we can verify that E |X| <∞, then for every n large enough, say n ≥ n2, we

would have

E |I2(n, k)| ≤ ε.

So once we have verified that X is integrable, then by choosing n = n1 ∨n2, we have

for every k that

E |Xk −X| ≤ 2ε+ E I3(n, k)

or

lim sup
k→∞

E |Xk −X| ≤ 2ε.

So the claim follows if we can verify that X is integrable. For this we use Fatou’s

lemma, which says that

E |X| ≤ lim inf
n→∞

E |Xn| = sup
n≥1

inf
k≥n

E |Xn| ≤ sup
n≥1

E |Xn|



The term on the right is bounded from above by the uniform integrability, since

suppose

sup
n

E |Xn|[ |Xn| > M ] ≤ 1

for some M . Then

E |Xn| = E |Xn|[ |Xn| ≤M ] + E |Xn|[ |Xn| > M ] ≤M + 1

and therefore,

E |X| ≤ sup
n

E |Xn| ≤M + 1.

So X is integrable, which finishes the proof.

5. Let Xt = Bt∧s be a stopped 1-dimensional Brownian motion at time instance

s ∈ (0,∞) (i.e. at constant stopping time). Show that Xt = E (X∞ |Ft) for every

t ∈ (0,∞) and deduce that X is uniformly integrable martingale. (Corrected Hint:

Xt and −Xt are supermartingales if X is a martingale, see Lemma 5.2. and Theorem

5.3.)

Suggestion. Let’s verify that X is a martingale that satisfies Xt = E (X∞ |Ft) .

This we have done already in Excercise sheet 2 Problem 8. provided we show that

X∞ is integrable. But since

E |X∞| = E |Bs| <∞

the martingale property follows form the Excercise sheet 2 Problem 8. Another way

would have been the direct computation or using Lemma 5.2.

Next we want to show X is uniformly integrable which shows that a Brownian

motion which is stopped at a constant time is uniformly integrable and therefore

shows that Brownian motion is also a local martingale. The same proof shows that

every martingale is a local martingale.

This follows from the formulation of Theorem 5.3. for martingales which are both

supermartingales and submartingales. Than one of the claims would be that X is

uniformly integrable martingale if and only if Xt = E (X∞ |Ft) for some integrable

random variable X∞. But let’s verify this claim in detail, since it is not in the lecture

notes.

Since X is a martingale, X is also a supermartingale and therefore,

X−t = E (X∞ |Ft) − ≤ E
(
X−∞ |Ft

)



by Jensen’s inequality. Furthermore, Y = −X is a martingale and hence a super-

martingale with

Y −t ≤ E
(
Y −∞ |Ft

)
.

Now The 5.3. says that both C− := { X−t : t ≥ 0 } and C+ := { Y −t : t ≥ 0 } are

uniformly integrable. However, since (−x)− = [−x < 0 ](− − x) = [ x > 0 ]x = x+,

we therefore have Y −t = X+
t and so C+ := { X+

t : t ≥ 0 }. This, however, implies

that C := { Xt : t ≥ 0 } is uniformly integrable, since

E |Xt| [ |Xt| > K ] = EX+
t [X+

t > K ] + EX−t [X−t > K ] ≤ ε

when K is large enough.

6. Define

p0(t, x, y) = 1√
2πt

(e−
(x−y)2

2t − e−
(x+y)2

2t )

for every t > 0, and x, y ∈ R and x, y ≥ 0. Verify that

∂tp0(t, x, y) = 1
2∂

2
yp0(t, x, y) and p0(t, 0, y) = 0

for every t > 0 and x, y > 0. This is the transition probability density function of

1-dimensional killed BM which is killed at zero.

Suggestion. Let’s rewrite p0(t, x, y) = q(t, y − x) − q(t, y + x) where q(t, y) =
(2πt)−1/2 exp(−1/(2t)y2). Now we will first test the initial value condition p0(t, 0, y) =
0 first. Since

p0(t, 0, y) = q(t, y − 0)− q(t, y + 0) = 0

this follows immediately. Now we need to do the differentiation. Since q(t, y) is

positive, we can compute its logarithm r = log q and

r(t, y) = −1
2 log(2π)− 1

2 log t− y2

2t
Now ∂tq = q∂tr, so

∂tq(t, y) = 1
2q(t, y)(−t−1 + y2t−2)

In the same way

∂yq(t, y) = 1
2q(t, y)(2y)t−1 = q(t, y)yt−1

The second derivative is then

∂2
yq(t, y) = yt−1∂yq(t, y) + q(t, y)t−1 =

(
y2t−2 + t−1)q(t, y) = 2∂tq(t, y)



or ∂tq = 1
2∂

2
yq. Using this we get the original claim, but to make it easier to follow,

let’s denote ∂tq = ∂1q and ∂2
yq = ∂2

2q, which then denote the derivative with respect

to first and second variable.

Therefore,

∂tp0(t, x, y) = ∂tq(t, y − x)− ∂tq(t, y + x) = (∂1q)(t, y − x)− (∂1q)(t, y + x)
= 1

2(∂2
2q)(t, y − x)− 1

2(∂2
2q)(t, y + x)

and on the other hand

∂2
yp0(t, x, y) = ∂y(∂2q)(t, y − x)− ∂y(∂2q)(t, y + x) = (∂2

2q)(t, y − x)− (∂2
2q)(t, y + x)

so comparing the right-hand side we get the claim.

Note that if we would have used p0(t, x, y) = q(t, x− y)− q(t, x+ y) formulation,

then ∂yp0(t, x, y) = −(∂2q)(t, x − y) − (∂2q)(x + y) but the second derivative would

have changed the sign back, since −∂y(∂2q)(t, x− y) = (∂2q)(t, x− y).

7. Let τ be a simple stopping time, say τ ∈ {t1, . . . , tn}. Show that Xτ is Fτ -

measurable and Fτ = Fτ+ .

Suggestion. Let U = {Xτ ∈ A}.

[Xτ ∈ A, τ ≤ t ] =
∑
tj≤t

[Xtj ∈ A, τ = tj ]

we see that U ∈ Fτ+ . But since A is arbitrary, Xτ is Fτ+-measurable. The second

claim is valid for every τ , since since if A ∈ Fτ , then

{A, τ ≤ t} ∈ Ft ⊂ Ft+

and if A ∈ Fτ+ , then

{A, τ ≤ t} ∈ Ft+ ⊂ Ft

by right-continuity.

8. Let s ≤ t < u and τ a stopping time. Show that

E ([ τ > t ](Xu −Xt) |Fs) ≤ 0

(Hint: You can use the fact that E (Z |H ) = E (E (Z |G ) |H ) for every σ-

algebras H ⊂ G and then you can apply the supermartingale property).



Suggestion. Since s ≤ t, we have that Fs ⊂ Ft and so

E ([ τ > t ](Xu −Xt) |Fs) = E (E ([ τ > t ](Xu −Xt) |Ft) |Fs) .

Since [ τ > t ] is Ft+ = Ft-measurable, we have

E ([ τ > t ](Xu −Xt) |Ft) = [ τ > t ]E (Xu −Xt |Ft) ≤ 0

by the supermartingale property. Therefore,

E ([ τ > t ](Xu −Xt) |Fs) = E (E ([ τ > t ](Xu −Xt) |Ft) |Fs) ≤ 0

as well.

9. Let τ and be a simple stopping time, say τ ∈ {t1, . . . , tn}. Let us assume that

s = t0 ≤ t1 < t2 < · · · < tn. Show that and

E (Xτ |Fs) ≤ Xs.

(Hint: show

Xτ −Xs =
n−1∑
k=0

[ τ > tk ](Xtk+1 −Xtk)

and use this identity with Problem 8.)

Suggestion. Suppose we have shown the identity of the hint. Then

E (Xτ −Xs |Fs) =
n−1∑
k=0

E
(
[ τ > tk ](Xtk+1 −Xtk) |Fs

)
≤ 0

since using s = s, t = tk and u = tk+1 we have exactly the case of Problem 8. But

hen the claim follows, since

E (Xτ |Fs) = Xs + E (Xτ −Xs |Fs) ≤ Xs

where we used that Xs is Fs-measurable. So we only need to show the identity.

Since τ is simple stopping time, we can write

Xτ −Xs =
n∑
k=0

[ τ = tk ](Xtk −Xt0) =
n∑
k=1

[ τ = tk ]
k−1∑
j=0

(Xtj+1 −Xtj )

where we wrote the difference as a telescoping sum. Let’s change the order of sum-

mations and we get

Xτ −Xs =
n−1∑
j=0

n∑
k=j+1

[ τ = tk ](Xtj+1 −Xtj ).



Since
n∑

k=j+1
[ τ = tk ] = [ τ ∈ {tj+1, . . . , tn} ] = [ τ ≥ tj+1 ] = [ τ > tj ]

the claim follows.

10. Let Xt = esBt−s2t/2. Show that it is a martingale with respect to the history of

Brownian motion. Hint: you are on right track if you have arrived to

E (Xu |Ft) = esBte−s
2u/2E esBu−t

Suggestion. First we verify that X is adapted, but this is evident, since Xt = f(Bt)
for f(x) = esxe−s

2t/2 which is continuous function.

Next we want to make sure that Xt is integrable. Since Xt ≥ 0, we have

E0 Xt = ct

ˆ
R
esxe−s

2t/2e−x
2/2t dx = ct

ˆ
R
e−

1
2t

(x2−2stx+s2t2) dx

= ct

ˆ
R
e−

x2
2t dx = 1

which also shows that the mean is constant, show we might have a martingale. But

to verify that let’s compute the conditional expectation

E0(Xu |Ft) = esBt−s2u/2E0
(
es(Bu−Bt) |Ft

)
= esBte−s

2u/2E esBu−t

since Bu − Bt is independent from Ft and Bu − Bt ∼ Bu−t. Since esBt = Xte
s2t/2,

we have

E0(Xu |Ft) = Xte
−s2(u−t)/2E0 e

sBu−t = XtE0 Xu−t = Xt

since the mean is 1.

11. Let τa = inf{ t > 0 : Bt = a } be the first hitting time of 1-dimensional

Brownian motion to the point a. Let a < x < b and Xt = Bτa∧τb
t . Show that Xt is a

bounded martingale for every x ∈ (a, b) where x is the starting point of X.

Suggestion. Let’s verify first that X is bounded, i.e. we want to show that

sup
t
|Xt| ≤M

almost surely. When t < τ , we know that Bt has to be between a and b, since B0 is.

Therefore, when X0 = x we have

sup
t<τ
|Xt| ≤M



almost surely where M = |a| ∨ |b|. When t ≥ τ , then either Xt = a or Xt = b, and

so

sup
t
|Xt| ≤M

almost surely.

Furthermore, the Lemma 5.9. says that Xν = Bτa∧τb∧ν is a martingale for every

bounded stopping time ν, since B is right-continuous martingale and τa ∧ τb ∧ ν is

a bounded stopping time. Since Xν is a bounded martingale, we have by Optional

Stopping Theorem that

ExXν = ExX
ν
ν = ExX0

and hence Lemma 5.2. says that X is martingale itself.

12. Assume the same as in 11. Show that

aPx ( τa < τb ) + bPx ( τb < τa ) = x

and show that

Px ( τa < τb ) = b− x
b− a

= 1−Px ( τa > τb ) .

(Hint: Optional Stopping Theorem for a bounded martingale. For the latter explain

first why Px ( τa = τb ) = 0 and then you have two equations for the probabilities).

Suggestion. We know that X = Bτa∧τb is a bounded martingale for every starting

point x ∈ (a, b) by Problem 11. Therefore, we can use the Optional Stopping Theorem

and we get that

ExXτa∧τb
= ExX0 = x.

This means that

x = ExBτa∧τb
= aPx ( τa < τb ) + bPx ( τb < τa ) +∞Px ( τa = τb =∞ )

since τa = τb < ∞ cannot happen, since Brownian motion cannot be at the two

places at the same time. The third option must vanish, since left-hand side is finite.

This verifies the first claim.

Also the vanishing of the third term implies Px ( τa = τb ) = 0 and so

Px ( τa < τb ) + Px ( τb < τa ) = 1.

Now we have two equations pa+ qb = x

p+ q = 1



where p = Px ( τa < τb ) and q = Px ( τb < τa ) which has a unique solution
p = b− x

b− a
q = x− a

b− a


