Department of Mathematics and Statistics Stochastic processes on domains Suggestions to excercise problem sheet 3

1. Suppose τ_1 and τ_2 are (\mathscr{F}_{t^+}) -stopping times and $\tau_1 \leq \tau_2$. Show that $\mathscr{F}_{\tau_1^+} \subset \mathscr{F}_{\tau_2^+}$. Suggestion. There was an unfortunate misprint and the essential assumption $\tau_1 \leq \tau_2$ was missing.

With this assumption, the proof might go as follows. Suppose $A \in \mathscr{F}_{\tau_1^+}$. Then we know that for every t > 0 the event $\{\tau_1 \leq t, A\} \in \mathscr{F}_{t^+}$.

Since $\tau_1 \leq \tau_2$, we have that $\{\tau_1 \leq t, \tau_2 \leq t\} \supset \{\tau_2 \leq t\}$. The other inclusion holds always, and so the events $\{\tau_1 \leq t, \tau_2 \leq t\} = \{\tau_2 \leq t\}$. Therefore,

$$\{A, \tau_2 \le t\} = \{A, \tau_1 \le t\} \cap \{\tau_2 \le t\}.$$

Since τ_2 is (\mathscr{F}_{t^+}) -stopping time, we have that $\{\tau_2 \leq t\} \in \mathscr{F}_{t^+}$ and so

$$\{A, \tau_2 \le t\} \in \mathscr{F}_{t^+}$$

for every t. This, however, means that $A \in \mathscr{F}_{\tau_2^+}$ and the claim follows.

2. Let X be a positive and integrable random variable. Show that the family $\{Y: |Y| \leq X\}$ is uniformly integrable. (Hint: estimate |Y|[|Y| > m] from above by random variable depending only on X and m).

Suggestion. Let's denote the set $\{Y : |Y| \leq X\}$ with \mathscr{C} and let's follow the hint by estimating |Y|[|Y| > m] from above. Let $Y \in \mathscr{C}$. Since $|Y| \leq X$, we have

$$\mathbf{E} |Y|[|Y| > m] \le \mathbf{E} X[|Y| > m].$$

Since $|Y| \leq X$, then $[|Y| > m] \leq [X > m]$. This implies that

$$\mathbf{E}\left|Y\right|\left[\left|Y\right| > m\right] \le \mathbf{E}X[X > m].$$

Since this holds for every $Y\in \mathscr{C}$ we obtain

$$\sup_{Y \in \mathscr{C}} \mathbf{E} |Y| [|Y| > m] \leq \mathbf{E} X [X > m]$$

and therefore,

$$\limsup_{m \to \infty} \sup_{Y \in \mathscr{C}} \mathbf{E} \left| Y \right| \left[\left| Y \right| > m \right] \le \limsup_{m \to \infty} \mathbf{E} \left[X \right] \left[X > m \right].$$

Since $X[X > m] \leq X$ and $X[X > m] \rightarrow 0$ almost surely, we have by the Lebesgue Dominated Convergence theorem that

$$\limsup_{m \to \infty} \mathbf{E} \, X[\, X > m \,] \, = 0$$

and therefore the claim follows.

3. Assume that $\mathbf{E} X_n^2 \leq M$ for every n. Show that $\{X_n : n \in \mathbb{N}\}$ is uniformly integrable. (Hint: $|X_n|m \leq X_n^2$ when $|X_n| \geq m$.)

Suggestion. Let's denote $\mathscr{C} = \{ X_n : \mathbf{E} X_n^2 \leq M \}$. Now we have by the hint above that

$$\mathbf{E} |X_n| [|X_n| > m] = \frac{1}{m} \mathbf{E} |X_n| m[|X_n| > m] \le \frac{1}{m} \mathbf{E} X_n^2 [|X_n| > m]$$

Since $\mathbf{E} X_n^2[|X_n| > m] \leq \mathbf{E} X_n^2 \leq M$, we have obtained an upper bound

$$\sup_{X_n \in \mathscr{C}} \mathbf{E} |X_n| [|X_n| > m] \le \frac{M}{m}.$$

This implies the claim, since $\frac{M}{m} \to 0$ when $m \to \infty$.

Note that we didn't actually need the countability of the set \mathscr{C} so we could have used $\mathscr{C} = \{ X : \mathbf{E} X^2 \leq M \}$ equally well. Furthermore, the second power is not essential, since if $\mathscr{C}_p = \{ X : \mathbf{E} | X |^p \leq M \}$, then the same proof idea gives that

$$\mathbf{E} |X|[|X| > m] = m^{1-p} \mathbf{E} |X|m^{p-1}[|X| > m] \le Mm^{1-p}.$$

This means that \mathscr{C}_p is uniformly integrable for every p > 1 but the technique fails when $p \leq 1$. However, just above p = 1 we are fine since $\mathscr{C}_{\phi} = \{X : \mathbf{E} X \phi(X) \leq M\}$ is uniformly integrable, as long as $\phi \uparrow \infty$, so for instance rather slowly increasing function $\phi(x) = [x > e^{e^e}] \log \log \log x$ works equally well. For instance $\phi(10^{729}) = 3 \log \log 10^9 = 3 * 3 \log 10^3 = 27 \log 10 \leq 65$.

4. Assume $X_n \to X$ in almost surely and $\{X_n : n \in \mathbb{N}\}$ is uniformly integrable. Show that $X_n \to X$ in L^1 -sense. (Hint: let $\phi_n(x) = x[|x| \le n] + n[x > n] - n[x < n]$ -n] and write $X_k - X = (X_k - \phi_n(X_k)) - (X - \phi_n(X)) + (\phi_n(X_k) - \phi_n(X)) = I_1 + I_2 + I_3$ and estimate term I_j each separetely).

Suggestion. Let's try to follow the hint. This means that

$$\mathbf{E} |X_k - X| \le \mathbf{E} |I_1(n,k)| + \mathbf{E} |I_2(n)| + \mathbf{E} |I_3(n,k)|.$$

The third term is something that vanishes for fixed n, since $|\phi_n(X_k) - \phi_n(X)| \le 2n$ is bounded and $|\phi_n(X_k) - \phi_n(X)| \to 0$ almost surely, as $k \to \infty$. Therefore,

$$\lim_{k \to \infty} \mathbf{E} \left| I_3(n,k) \right| = 0$$

for every fixed n.

The first term is handled with uniform integrability, since

$$|I_1(n,k)| \le |X_k| [|X_k| > n]$$

and so for every large enough n, say $n \ge n_1$, we have

$$\sup_{k} \mathbf{E} \left| I_1(n,k) \right| \le \varepsilon.$$

The second term can again be estimated as

$$|I_2(n)| \le |X| [|X| > n]$$

and if we can verify that $\mathbf{E} |X| < \infty$, then for every *n* large enough, say $n \ge n_2$, we would have

$$\mathbf{E}\left|I_2(n,k)\right| \leq \varepsilon.$$

So once we have verified that X is integrable, then by choosing $n = n_1 \vee n_2$, we have for every k that

$$\mathbf{E} |X_k - X| \le 2\varepsilon + \mathbf{E} I_3(n, k)$$

or

$$\limsup_{k \to \infty} \mathbf{E} \left| X_k - X \right| \le 2\varepsilon.$$

So the claim follows if we can verify that X is integrable. For this we use Fatou's lemma, which says that

$$\mathbf{E} |X| \leq \liminf_{n \to \infty} \mathbf{E} |X_n| = \sup_{n \geq 1} \inf_{k \geq n} \mathbf{E} |X_n| \leq \sup_{n \geq 1} \mathbf{E} |X_n|$$

The term on the right is bounded from above by the uniform integrability, since suppose

$$\sup_{n} \mathbf{E} |X_n| [|X_n| > M] \le 1$$

for some M. Then

$$\mathbf{E} |X_n| = \mathbf{E} |X_n| [|X_n| \le M] + \mathbf{E} |X_n| [|X_n| > M] \le M + 1$$

and therefore,

$$\mathbf{E}|X| \le \sup_{n} \mathbf{E}|X_{n}| \le M+1.$$

So X is integrable, which finishes the proof.

5. Let $X_t = B_{t \wedge s}$ be a stopped 1-dimensional Brownian motion at time instance $s \in (0, \infty)$ (i.e. at constant stopping time). Show that $X_t = \mathbf{E} (X_{\infty} | \mathscr{F}_t)$ for every $t \in (0, \infty)$ and deduce that X is uniformly integrable martingale. (Corrected Hint: X_t and $-X_t$ are supermartingales if X is a martingale, see Lemma 5.2. and Theorem 5.3.)

Suggestion. Let's verify that X is a martingale that satisfies $X_t = \mathbf{E} (X_{\infty} | \mathscr{F}_t)$. This we have done already in Excercise sheet 2 Problem 8. provided we show that X_{∞} is integrable. But since

$$\mathbf{E}\left|X_{\infty}\right| = \mathbf{E}\left|B_{s}\right| < \infty$$

the martingale property follows form the Excercise sheet 2 Problem 8. Another way would have been the direct computation or using Lemma 5.2.

Next we want to show X is uniformly integrable which shows that a Brownian motion which is stopped at a constant time is uniformly integrable and therefore shows that Brownian motion is also a local martingale. The same proof shows that every martingale is a local martingale.

This follows from the formulation of Theorem 5.3. for martingales which are both supermartingales and submartingales. Than one of the claims would be that X is uniformly integrable martingale if and only if $X_t = \mathbf{E} (X_{\infty} | \mathscr{F}_t)$ for some integrable random variable X_{∞} . But let's verify this claim in detail, since it is not in the lecture notes.

Since X is a martingale, X is also a supermartingale and therefore,

$$X_t^- = \mathbf{E} \left(X_\infty \,|\, \mathscr{F}_t \right)^- \le \mathbf{E} \left(X_\infty^- \,|\, \mathscr{F}_t \right)$$

by Jensen's inequality. Furthermore, Y = -X is a martingale and hence a supermartingale with

$$Y_t^- \le \mathbf{E} \left(Y_\infty^- \,|\, \mathscr{F}_t \right)$$

Now The 5.3. says that both $\mathscr{C}_{-} := \{ X_t^- : t \ge 0 \}$ and $\mathscr{C}_{+} := \{ Y_t^- : t \ge 0 \}$ are uniformly integrable. However, since $(-x)^- = [-x < 0](-x) = [x > 0]x = x^+$, we therefore have $Y_t^- = X_t^+$ and so $\mathscr{C}_{+} := \{ X_t^+ : t \ge 0 \}$. This, however, implies that $\mathscr{C} := \{ X_t : t \ge 0 \}$ is uniformly integrable, since

$$\mathbf{E}\left[X_{t}\right]\left[\left|X_{t}\right| > K\right] = \mathbf{E}X_{t}^{+}\left[X_{t}^{+} > K\right] + \mathbf{E}X_{t}^{-}\left[X_{t}^{-} > K\right] \le \varepsilon$$

when K is large enough.

6. Define

$$p_0(t, x, y) = \frac{1}{\sqrt{2\pi t}} \left(e^{-\frac{(x-y)^2}{2t}} - e^{-\frac{(x+y)^2}{2t}} \right)$$

for every t > 0, and $x, y \in \mathbb{R}$ and $x, y \ge 0$. Verify that

$$\partial_t p_0(t, x, y) = \frac{1}{2} \partial_y^2 p_0(t, x, y)$$
 and $p_0(t, 0, y) = 0$

for every t > 0 and x, y > 0. This is the transition probability density function of 1-dimensional killed BM which is killed at zero.

Suggestion. Let's rewrite $p_0(t, x, y) = q(t, y - x) - q(t, y + x)$ where $q(t, y) = (2\pi t)^{-1/2} \exp(-1/(2t)y^2)$. Now we will first test the initial value condition $p_0(t, 0, y) = 0$ first. Since

$$p_0(t,0,y) = q(t,y-0) - q(t,y+0) = 0$$

this follows immediately. Now we need to do the differentiation. Since q(t, y) is positive, we can compute its logarithm $r = \log q$ and

$$r(t,y) = -\frac{1}{2}\log(2\pi) - \frac{1}{2}\log t - \frac{y^2}{2t}$$

Now $\partial_t q = q \partial_t r$, so

$$\partial_t q(t,y) = \frac{1}{2}q(t,y)(-t^{-1}+y^2t^{-2})$$

In the same way

$$\partial_y q(t,y) = \frac{1}{2}q(t,y)(2y)t^{-1} = q(t,y)yt^{-1}$$

The second derivative is then

$$\partial_y^2 q(t,y) = yt^{-1}\partial_y q(t,y) + q(t,y)t^{-1} = \left(y^2t^{-2} + t^{-1}\right)q(t,y) = 2\partial_t q(t,y)$$

or $\partial_t q = \frac{1}{2} \partial_y^2 q$. Using this we get the original claim, but to make it easier to follow, let's denote $\partial_t q = \partial_1 q$ and $\partial_y^2 q = \partial_2^2 q$, which then denote the derivative with respect to first and second variable.

Therefore,

$$\partial_t p_0(t, x, y) = \partial_t q(t, y - x) - \partial_t q(t, y + x) = (\partial_1 q)(t, y - x) - (\partial_1 q)(t, y + x)$$
$$= \frac{1}{2} (\partial_2^2 q)(t, y - x) - \frac{1}{2} (\partial_2^2 q)(t, y + x)$$

and on the other hand

$$\partial_y^2 p_0(t, x, y) = \partial_y(\partial_2 q)(t, y - x) - \partial_y(\partial_2 q)(t, y + x) = (\partial_2^2 q)(t, y - x) - (\partial_2^2 q)(t, y + x)$$

so comparing the right-hand side we get the claim.

Note that if we would have used $p_0(t, x, y) = q(t, x - y) - q(t, x + y)$ formulation, then $\partial_y p_0(t, x, y) = -(\partial_2 q)(t, x - y) - (\partial_2 q)(x + y)$ but the second derivative would have changed the sign back, since $-\partial_y(\partial_2 q)(t, x - y) = (\partial_2 q)(t, x - y)$.

7. Let τ be a simple stopping time, say $\tau \in \{t_1, \ldots, t_n\}$. Show that X_{τ} is \mathscr{F}_{τ} measurable and $\mathscr{F}_{\tau} = \mathscr{F}_{\tau^+}$.

Suggestion. Let $U = \{X_{\tau} \in A\}.$

$$[X_{\tau} \in A, \tau \leq t] = \sum_{t_j \leq t} [X_{t_j} \in A, \tau = t_j]$$

we see that $U \in \mathscr{F}_{\tau^+}$. But since A is arbitrary, X_{τ} is \mathscr{F}_{τ^+} -measurable. The second claim is valid for every τ , since since if $A \in \mathscr{F}_{\tau}$, then

$$\{A, \tau \le t\} \in \mathscr{F}_t \subset \mathscr{F}_{t^+}$$

and if $A \in \mathscr{F}_{\tau^+}$, then

$$\{A, \tau \le t\} \in \mathscr{F}_{t^+} \subset \mathscr{F}_t$$

by right-continuity.

8. Let $s \leq t < u$ and τ a stopping time. Show that

$$\mathbf{E}\left(\left[\tau > t\right](X_u - X_t) \,|\, \mathscr{F}_s\right) \leq 0$$

(Hint: You can use the fact that $\mathbf{E}(Z | \mathscr{H}) = \mathbf{E}(\mathbf{E}(Z | \mathscr{G}) | \mathscr{H})$ for every σ -algebras $\mathscr{H} \subset \mathscr{G}$ and then you can apply the supermartingale property).

Suggestion. Since $s \leq t$, we have that $\mathscr{F}_s \subset \mathscr{F}_t$ and so

$$\mathbf{E}\left([\tau > t](X_u - X_t) \,|\, \mathscr{F}_s\right) = \mathbf{E}\left(\mathbf{E}\left([\tau > t](X_u - X_t) \,|\, \mathscr{F}_t\right) \,|\, \mathscr{F}_s\right) \,.$$

Since $[\tau > t]$ is $\mathscr{F}_{t^+} = \mathscr{F}_t$ -measurable, we have

$$\mathbf{E}\left(\left[\tau > t\right](X_u - X_t) \,|\, \mathscr{F}_t\right) = \left[\tau > t\right] \mathbf{E}\left(X_u - X_t \,|\, \mathscr{F}_t\right) \leq 0$$

by the supermartingale property. Therefore,

$$\mathbf{E}\left([\tau > t](X_u - X_t) \,|\, \mathscr{F}_s\right) = \mathbf{E}\left(\mathbf{E}\left([\tau > t](X_u - X_t) \,|\, \mathscr{F}_t\right) \,|\, \mathscr{F}_s\right) \leq 0$$

as well.

9. Let τ and be a simple stopping time, say $\tau \in \{t_1, \ldots, t_n\}$. Let us assume that $s = t_0 \leq t_1 < t_2 < \cdots < t_n$. Show that and

$$\mathbf{E} (X_{\tau} \,|\, \mathscr{F}_s) \leq X_s.$$

(Hint: show

$$X_{\tau} - X_s = \sum_{k=0}^{n-1} [\tau > t_k] (X_{t_{k+1}} - X_{t_k})$$

and use this identity with Problem 8.)

Suggestion. Suppose we have shown the identity of the hint. Then

$$\mathbf{E} \left(X_{\tau} - X_s \,|\, \mathscr{F}_s \right) = \sum_{k=0}^{n-1} \mathbf{E} \left(\left[\,\tau > t_k \,\right] (X_{t_{k+1}} - X_{t_k}) \,|\, \mathscr{F}_s \right) \leq 0$$

since using s = s, $t = t_k$ and $u = t_{k+1}$ we have exactly the case of Problem 8. But hen the claim follows, since

$$\mathbf{E} (X_{\tau} | \mathscr{F}_s) = X_s + \mathbf{E} (X_{\tau} - X_s | \mathscr{F}_s) \le X_s$$

where we used that X_s is \mathscr{F}_s -measurable. So we only need to show the identity. Since τ is simple stopping time, we can write

$$X_{\tau} - X_s = \sum_{k=0}^{n} [\tau = t_k] (X_{t_k} - X_{t_0}) = \sum_{k=1}^{n} [\tau = t_k] \sum_{j=0}^{k-1} (X_{t_{j+1}} - X_{t_j})$$

where we wrote the difference as a telescoping sum. Let's change the order of summations and we get

$$X_{\tau} - X_s = \sum_{j=0}^{n-1} \sum_{k=j+1}^{n} [\tau = t_k] (X_{t_{j+1}} - X_{t_j}).$$

Since

$$\sum_{j=j+1}^{n} [\tau = t_k] = [\tau \in \{t_{j+1}, \dots, t_n\}] = [\tau \ge t_{j+1}] = [\tau > t_j]$$

the claim follows.

k

10. Let $X_t = e^{sB_t - s^2 t/2}$. Show that it is a martingale with respect to the history of Brownian motion. Hint: you are on right track if you have arrived to

$$\mathbf{E} (X_u | \mathscr{F}_t) = e^{sB_t} e^{-s^2 u/2} \mathbf{E} e^{sB_{u-t}}$$

Suggestion. First we verify that X is adapted, but this is evident, since $X_t = f(B_t)$ for $f(x) = e^{sx}e^{-s^2t/2}$ which is continuous function.

Next we want to make sure that X_t is integrable. Since $X_t \ge 0$, we have

$$\mathbf{E}_{0} X_{t} = c_{t} \int_{\mathbb{R}} e^{sx} e^{-s^{2}t/2} e^{-x^{2}/2t} \, \mathrm{d}x = c_{t} \int_{\mathbb{R}} e^{-\frac{1}{2t}(x^{2}-2stx+s^{2}t^{2})} \, \mathrm{d}x$$
$$= c_{t} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2t}} \, \mathrm{d}x = 1$$

which also shows that the mean is constant, show we might have a martingale. But to verify that let's compute the conditional expectation

$$\mathbf{E}_{0}(X_{u} | \mathscr{F}_{t}) = e^{sB_{t} - s^{2}u/2} \mathbf{E}_{0} \left(e^{s(B_{u} - B_{t})} | \mathscr{F}_{t} \right) = e^{sB_{t}} e^{-s^{2}u/2} \mathbf{E} e^{sB_{u-t}}$$

since $B_u - B_t$ is independent from \mathscr{F}_t and $B_u - B_t \sim B_{u-t}$. Since $e^{sB_t} = X_t e^{s^2 t/2}$, we have

$$\mathbf{E}_0(X_u \,|\, \mathscr{F}_t) = X_t e^{-s^2(u-t)/2} \mathbf{E}_0 \, e^{sB_{u-t}} = X_t \mathbf{E}_0 \, X_{u-t} = X_t$$

since the mean is 1.

11. Let $\tau_a = \inf\{t > 0: B_t = a\}$ be the first hitting time of *1*-dimensional Brownian motion to the point a. Let a < x < b and $X_t = B_t^{\tau_a \wedge \tau_b}$. Show that X_t is a bounded martingale for every $x \in (a, b)$ where x is the starting point of X. Suggestion. Let's verify first that X is bounded, i.e. we want to show that

$$\sup_{t} |X_t| \le M$$

almost surely. When $t < \tau$, we know that B_t has to be between a and b, since B_0 is. Therefore, when $X_0 = x$ we have

$$\sup_{t < \tau} |X_t| \le M$$

almost surely where $M = |a| \vee |b|$. When $t \geq \tau$, then either $X_t = a$ or $X_t = b$, and so

$$\sup_{t} |X_t| \le M$$

almost surely.

Furthermore, the Lemma 5.9. says that $X^{\nu} = B^{\tau_a \wedge \tau_b \wedge \nu}$ is a martingale for every bounded stopping time ν , since B is right-continuous martingale and $\tau_a \wedge \tau_b \wedge \nu$ is a bounded stopping time. Since X^{ν} is a bounded martingale, we have by Optional Stopping Theorem that

$$\mathbf{E}_x X_\nu = \mathbf{E}_x X_\nu^\nu = \mathbf{E}_x X_0$$

and hence Lemma 5.2. says that X is martingale itself.

12. Assume the same as in 11. Show that

$$a\mathbf{P}_{x}\left(\tau_{a} < \tau_{b}\right) + b\mathbf{P}_{x}\left(\tau_{b} < \tau_{a}\right) = x$$

and show that

$$\mathbf{P}_{x}\left(\tau_{a} < \tau_{b}\right) = \frac{b-x}{b-a} = 1 - \mathbf{P}_{x}\left(\tau_{a} > \tau_{b}\right).$$

(Hint: Optional Stopping Theorem for a bounded martingale. For the latter explain first why $\mathbf{P}_x (\tau_a = \tau_b) = 0$ and then you have two equations for the probabilities). **Suggestion**. We know that $X = B^{\tau_a \wedge \tau_b}$ is a bounded martingale for every starting point $x \in (a, b)$ by Problem 11. Therefore, we can use the Optional Stopping Theorem and we get that

$$\mathbf{E}_x X_{\tau_a \wedge \tau_b} = \mathbf{E}_x X_0 = x.$$

This means that

$$x = \mathbf{E}_x B_{\tau_a \wedge \tau_b} = a \mathbf{P}_x \left(\tau_a < \tau_b \right) + b \mathbf{P}_x \left(\tau_b < \tau_a \right) + \infty \mathbf{P}_x \left(\tau_a = \tau_b = \infty \right)$$

since $\tau_a = \tau_b < \infty$ cannot happen, since Brownian motion cannot be at the two places at the same time. The third option must vanish, since left-hand side is finite. This verifies the first claim.

Also the vanishing of the third term implies $\mathbf{P}_{x}(\tau_{a}=\tau_{b})=0$ and so

$$\mathbf{P}_x\left(\tau_a < \tau_b\right) + \mathbf{P}_x\left(\tau_b < \tau_a\right) = 1.$$

Now we have two equations

$$\begin{cases} pa + qb = x\\ p + q = 1 \end{cases}$$

where $p = \mathbf{P}_x (\tau_a < \tau_b)$ and $q = \mathbf{P}_x (\tau_b < \tau_a)$ which has a unique solution

$$\begin{cases} p = \frac{b - x}{b - a} \\ q = \frac{x - a}{b - a} \end{cases}$$