Department of Mathematics and Statistics
 Stochastic processes on domains

Suggestions to excercise problem sheet 3

1. Suppose τ_{1} and τ_{2} are $\left(\mathscr{F}_{{ }^{+}}\right)$-stopping times and $\tau_{1} \leq \tau_{2}$. Show that $\mathscr{F}_{\tau_{1}^{+}} \subset \mathscr{F}_{\tau_{2}^{+}}$. Suggestion. There was an unfortunate misprint and the essential assumption $\tau_{1} \leq$ τ_{2} was missing.

With this assumption, the proof might go as follows. Suppose $A \in \mathscr{F}_{\tau_{1}^{+}}$. Then we know that for every $t>0$ the event $\left\{\tau_{1} \leq t, A\right\} \in \mathscr{F}_{t^{+}}$.

Since $\tau_{1} \leq \tau_{2}$, we have that $\left\{\tau_{1} \leq t, \tau_{2} \leq t\right\} \supset\left\{\tau_{2} \leq t\right\}$. The other inclusion holds always, and so the events $\left\{\tau_{1} \leq t, \tau_{2} \leq t\right\}=\left\{\tau_{2} \leq t\right\}$. Therefore,

$$
\left\{A, \tau_{2} \leq t\right\}=\left\{A, \tau_{1} \leq t\right\} \cap\left\{\tau_{2} \leq t\right\}
$$

Since τ_{2} is $\left(\mathscr{F}_{t^{+}}\right)$-stopping time, we have that $\left\{\tau_{2} \leq t\right\} \in \mathscr{F}_{t^{+}}$and so

$$
\left\{A, \tau_{2} \leq t\right\} \in \mathscr{F}_{t^{+}}
$$

for every t. This, however, means that $A \in \mathscr{F}_{\tau_{2}^{+}}$and the claim follows.
2. Let X be a positive and integrable random variable. Show that the family $\{Y:|Y| \leq X\}$ is uniformly integrable. (Hint: estimate $|Y|[|Y|>m]$ from above by random variable depending only on X and m).
Suggestion. Let's denote the set $\{Y:|Y| \leq X\}$ with \mathscr{C} and let's follow the hint by estimating $|Y|[|Y|>m]$ from above. Let $Y \in \mathscr{C}$. Since $|Y| \leq X$, we have

$$
\mathbf{E}|Y|[|Y|>m] \leq \mathbf{E} X[|Y|>m] .
$$

Since $|Y| \leq X$, then $[|Y|>m] \leq[X>m]$. This implies that

$$
\mathbf{E}|Y|[|Y|>m] \leq \mathbf{E} X[X>m]
$$

Since this holds for every $Y \in \mathscr{C}$ we obtain

$$
\sup _{Y \in \mathscr{C}} \mathbf{E}|Y|[|Y|>m] \leq \mathbf{E} X[X>m]
$$

and therefore,

$$
\limsup _{m \rightarrow \infty} \sup _{Y \in \mathscr{C}} \mathbf{E}|Y|[|Y|>m] \leq \limsup _{m \rightarrow \infty} \mathbf{E} X[X>m]
$$

Since $X[X>m] \leq X$ and $X[X>m] \rightarrow 0$ almost surely, we have by the Lebesgue Dominated Convergence theorem that

$$
\limsup _{m \rightarrow \infty} \mathbf{E} X[X>m]=0
$$

and therefore the claim follows.
3. Assume that $\mathbf{E} X_{n}^{2} \leq M$ for every n. Show that $\left\{X_{n}: n \in \mathbb{N}\right\}$ is uniformly integrable. (Hint: $\left|X_{n}\right| m \leq X_{n}^{2}$ when $\left|X_{n}\right| \geq m$.)
Suggestion. Let's denote $\mathscr{C}=\left\{X_{n}: \mathbf{E} X_{n}^{2} \leq M\right\}$. Now we have by the hint above that

$$
\mathbf{E}\left|X_{n}\right|\left[\left|X_{n}\right|>m\right]=\frac{1}{m} \mathbf{E}\left|X_{n}\right| m\left[\left|X_{n}\right|>m\right] \leq \frac{1}{m} \mathbf{E} X_{n}^{2}\left[\left|X_{n}\right|>m\right]
$$

Since $\mathbf{E} X_{n}^{2}\left[\left|X_{n}\right|>m\right] \leq \mathbf{E} X_{n}^{2} \leq M$, we have obtained an upper bound

$$
\sup _{X_{n} \in \mathscr{C}} \mathbf{E}\left|X_{n}\right|\left[\left|X_{n}\right|>m\right] \leq \frac{M}{m} .
$$

This implies the claim, since $\frac{M}{m} \rightarrow 0$ when $m \rightarrow \infty$.
Note that we didn't actually need the countability of the set \mathscr{C} so we could have used $\mathscr{C}=\left\{X: \mathbf{E} X^{2} \leq M\right\}$ equally well. Furthermore, the second power is not essential, since if $\mathscr{C}_{p}=\left\{X: \mathbf{E}|X|^{p} \leq M\right\}$, then the same proof idea gives that

$$
\mathbf{E}|X|[|X|>m]=m^{1-p} \mathbf{E}|X| m^{p-1}[|X|>m] \leq M m^{1-p} .
$$

This means that \mathscr{C}_{p} is uniformly integrable for every $p>1$ but the technique fails when $p \leq 1$. However, just above $p=1$ we are fine since $\mathscr{C}_{\phi}=\{X: \mathbf{E} X \phi(X) \leq$ $M\}$ is uniformly integrable, as long as $\phi \uparrow \infty$, so for instance rather slowly increasing function $\phi(x)=\left[x>e^{e^{e}}\right] \log \log \log x$ works equally well. For instance $\phi\left(10^{729}\right)=$ $3 \log \log 10^{9}=3 * 3 \log 10^{3}=27 \log 10 \leq 65$.
4. Assume $X_{n} \rightarrow X$ in almost surely and $\left\{X_{n}: n \in \mathbb{N}\right\}$ is uniformly integrable. Show that $X_{n} \rightarrow X$ in L^{1}-sense. (Hint: let $\phi_{n}(x)=x[|x| \leq n]+n[x>n]-n[x<$
$-n]$ and write $X_{k}-X=\left(X_{k}-\phi_{n}\left(X_{k}\right)\right)-\left(X-\phi_{n}(X)\right)+\left(\phi_{n}\left(X_{k}\right)-\phi_{n}(X)\right)=I_{1}+I_{2}+I_{3}$ and estimate term I_{j} each separetely).
Suggestion. Let's try to follow the hint. This means that

$$
\mathbf{E}\left|X_{k}-X\right| \leq \mathbf{E}\left|I_{1}(n, k)\right|+\mathbf{E}\left|I_{2}(n)\right|+\mathbf{E}\left|I_{3}(n, k)\right|
$$

The third term is something that vanishes for fixed n, since $\left|\phi_{n}\left(X_{k}\right)-\phi_{n}(X)\right| \leq 2 n$ is bounded and $\left|\phi_{n}\left(X_{k}\right)-\phi_{n}(X)\right| \rightarrow 0$ almost surely, as $k \rightarrow \infty$. Therefore,

$$
\lim _{k \rightarrow \infty} \mathbf{E}\left|I_{3}(n, k)\right|=0
$$

for every fixed n.
The first term is handled with uniform integrability, since

$$
\left|I_{1}(n, k)\right| \leq\left|X_{k}\right|\left[\left|X_{k}\right|>n\right]
$$

and so for every large enough n, say $n \geq n_{1}$, we have

$$
\sup _{k} \mathbf{E}\left|I_{1}(n, k)\right| \leq \varepsilon
$$

The second term can again be estimated as

$$
\left|I_{2}(n)\right| \leq|X|[|X|>n]
$$

and if we can verify that $\mathbf{E}|X|<\infty$, then for every n large enough, say $n \geq n_{2}$, we would have

$$
\mathbf{E}\left|I_{2}(n, k)\right| \leq \varepsilon
$$

So once we have verified that X is integrable, then by choosing $n=n_{1} \vee n_{2}$, we have for every k that

$$
\mathbf{E}\left|X_{k}-X\right| \leq 2 \varepsilon+\mathbf{E} I_{3}(n, k)
$$

or

$$
\limsup _{k \rightarrow \infty} \mathbf{E}\left|X_{k}-X\right| \leq 2 \varepsilon
$$

So the claim follows if we can verify that X is integrable. For this we use Fatou's lemma, which says that

$$
\mathbf{E}|X| \leq \liminf _{n \rightarrow \infty} \mathbf{E}\left|X_{n}\right|=\sup _{n \geq 1} \inf _{k \geq n} \mathbf{E}\left|X_{n}\right| \leq \sup _{n \geq 1} \mathbf{E}\left|X_{n}\right|
$$

The term on the right is bounded from above by the uniform integrability, since suppose

$$
\sup _{n} \mathbf{E}\left|X_{n}\right|\left[\left|X_{n}\right|>M\right] \leq 1
$$

for some M. Then

$$
\mathbf{E}\left|X_{n}\right|=\mathbf{E}\left|X_{n}\right|\left[\left|X_{n}\right| \leq M\right]+\mathbf{E}\left|X_{n}\right|\left[\left|X_{n}\right|>M\right] \leq M+1
$$

and therefore,

$$
\mathbf{E}|X| \leq \sup _{n} \mathbf{E}\left|X_{n}\right| \leq M+1
$$

So X is integrable, which finishes the proof.
5. Let $X_{t}=B_{t \wedge s}$ be a stopped 1-dimensional Brownian motion at time instance $s \in(0, \infty)$ (i.e. at constant stopping time). Show that $X_{t}=\mathbf{E}\left(X_{\infty} \mid \mathscr{F}_{t}\right)$ for every $t \in(0, \infty)$ and deduce that X is uniformly integrable martingale. (Corrected Hint: X_{t} and $-X_{t}$ are supermartingales if X is a martingale, see Lemma 5.2. and Theorem 5.3.)

Suggestion. Let's verify that X is a martingale that satisfies $X_{t}=\mathbf{E}\left(X_{\infty} \mid \mathscr{F}_{t}\right)$. This we have done already in Excercise sheet 2 Problem 8. provided we show that X_{∞} is integrable. But since

$$
\mathbf{E}\left|X_{\infty}\right|=\mathbf{E}\left|B_{s}\right|<\infty
$$

the martingale property follows form the Excercise sheet 2 Problem 8. Another way would have been the direct computation or using Lemma 5.2.

Next we want to show X is uniformly integrable which shows that a Brownian motion which is stopped at a constant time is uniformly integrable and therefore shows that Brownian motion is also a local martingale. The same proof shows that every martingale is a local martingale.

This follows from the formulation of Theorem 5.3. for martingales which are both supermartingales and submartingales. Than one of the claims would be that X is uniformly integrable martingale if and only if $X_{t}=\mathbf{E}\left(X_{\infty} \mid \mathscr{F}_{t}\right)$ for some integrable random variable X_{∞}. But let's verify this claim in detail, since it is not in the lecture notes.

Since X is a martingale, X is also a supermartingale and therefore,

$$
X_{t}^{-}=\mathbf{E}\left(X_{\infty} \mid \mathscr{F}_{t}\right)^{-} \leq \mathbf{E}\left(X_{\infty}^{-} \mid \mathscr{F}_{t}\right)
$$

by Jensen's inequality. Furthermore, $Y=-X$ is a martingale and hence a supermartingale with

$$
Y_{t}^{-} \leq \mathbf{E}\left(Y_{\infty}^{-} \mid \mathscr{F}_{t}\right) .
$$

Now The 5.3. says that both $\mathscr{C}_{-}:=\left\{X_{t}^{-}: t \geq 0\right\}$ and $\mathscr{C}_{+}:=\left\{Y_{t}^{-}: t \geq 0\right\}$ are uniformly integrable. However, since $(-x)^{-}=[-x<0](--x)=[x>0] x=x^{+}$, we therefore have $Y_{t}^{-}=X_{t}^{+}$and so $\mathscr{C}_{+}:=\left\{X_{t}^{+}: t \geq 0\right\}$. This, however, implies that $\mathscr{C}:=\left\{X_{t}: t \geq 0\right\}$ is uniformly integrable, since

$$
\mathbf{E}\left|X_{t}\right|\left[\left|X_{t}\right|>K\right]=\mathbf{E} X_{t}^{+}\left[X_{t}^{+}>K\right]+\mathbf{E} X_{t}^{-}\left[X_{t}^{-}>K\right] \leq \varepsilon
$$

when K is large enough.
6. Define

$$
p_{0}(t, x, y)=\frac{1}{\sqrt{2 \pi t}}\left(e^{-\frac{(x-y)^{2}}{2 t}}-e^{-\frac{(x+y)^{2}}{2 t}}\right)
$$

for every $t>0$, and $x, y \in \mathbb{R}$ and $x, y \geq 0$. Verify that

$$
\partial_{t} p_{0}(t, x, y)=\frac{1}{2} \partial_{y}^{2} p_{0}(t, x, y) \quad \text { and } \quad p_{0}(t, 0, y)=0
$$

for every $t>0$ and $x, y>0$. This is the transition probability density function of 1-dimensional killed BM which is killed at zero.
Suggestion. Let's rewrite $p_{0}(t, x, y)=q(t, y-x)-q(t, y+x)$ where $q(t, y)=$ $(2 \pi t)^{-1 / 2} \exp \left(-1 /(2 t) y^{2}\right)$. Now we will first test the initial value condition $p_{0}(t, 0, y)=$ 0 first. Since

$$
p_{0}(t, 0, y)=q(t, y-0)-q(t, y+0)=0
$$

this follows immediately. Now we need to do the differentiation. Since $q(t, y)$ is positive, we can compute its $\operatorname{logarithm} r=\log q$ and

$$
r(t, y)=-\frac{1}{2} \log (2 \pi)-\frac{1}{2} \log t-\frac{y^{2}}{2 t}
$$

Now $\partial_{t} q=q \partial_{t} r$, so

$$
\partial_{t} q(t, y)=\frac{1}{2} q(t, y)\left(-t^{-1}+y^{2} t^{-2}\right)
$$

In the same way

$$
\partial_{y} q(t, y)=\frac{1}{2} q(t, y)(2 y) t^{-1}=q(t, y) y t^{-1}
$$

The second derivative is then

$$
\partial_{y}^{2} q(t, y)=y t^{-1} \partial_{y} q(t, y)+q(t, y) t^{-1}=\left(y^{2} t^{-2}+t^{-1}\right) q(t, y)=2 \partial_{t} q(t, y)
$$

or $\partial_{t} q=\frac{1}{2} \partial_{y}^{2} q$. Using this we get the original claim, but to make it easier to follow, let's denote $\partial_{t} q=\partial_{1} q$ and $\partial_{y}^{2} q=\partial_{2}^{2} q$, which then denote the derivative with respect to first and second variable.

Therefore,

$$
\begin{aligned}
\partial_{t} p_{0}(t, x, y) & =\partial_{t} q(t, y-x)-\partial_{t} q(t, y+x)=\left(\partial_{1} q\right)(t, y-x)-\left(\partial_{1} q\right)(t, y+x) \\
& =\frac{1}{2}\left(\partial_{2}^{2} q\right)(t, y-x)-\frac{1}{2}\left(\partial_{2}^{2} q\right)(t, y+x)
\end{aligned}
$$

and on the other hand
$\partial_{y}^{2} p_{0}(t, x, y)=\partial_{y}\left(\partial_{2} q\right)(t, y-x)-\partial_{y}\left(\partial_{2} q\right)(t, y+x)=\left(\partial_{2}^{2} q\right)(t, y-x)-\left(\partial_{2}^{2} q\right)(t, y+x)$
so comparing the right-hand side we get the claim.
Note that if we would have used $p_{0}(t, x, y)=q(t, x-y)-q(t, x+y)$ formulation, then $\partial_{y} p_{0}(t, x, y)=-\left(\partial_{2} q\right)(t, x-y)-\left(\partial_{2} q\right)(x+y)$ but the second derivative would have changed the sign back, since $-\partial_{y}\left(\partial_{2} q\right)(t, x-y)=\left(\partial_{2} q\right)(t, x-y)$.
7. Let τ be a simple stopping time, say $\tau \in\left\{t_{1}, \ldots, t_{n}\right\}$. Show that X_{τ} is $\mathscr{F}_{\tau^{-}}$ measurable and $\mathscr{F}_{\tau}=\mathscr{F}_{\tau^{+}}$.
Suggestion. Let $U=\left\{X_{\tau} \in A\right\}$.

$$
\left[X_{\tau} \in A, \tau \leq t\right]=\sum_{t_{j} \leq t}\left[X_{t_{j}} \in A, \tau=t_{j}\right]
$$

we see that $U \in \mathscr{F}_{\tau^{+}}$. But since A is arbitrary, X_{τ} is $\mathscr{F}_{\tau^{+}}$-measurable. The second claim is valid for every τ, since since if $A \in \mathscr{F}_{\tau}$, then

$$
\{A, \tau \leq t\} \in \mathscr{F}_{t} \subset \mathscr{F}_{t^{+}}
$$

and if $A \in \mathscr{F}_{\tau^{+}}$, then

$$
\{A, \tau \leq t\} \in \mathscr{F}_{t^{+}} \subset \mathscr{F}_{t}
$$

by right-continuity.
8. Let $s \leq t<u$ and τ a stopping time. Show that

$$
\mathbf{E}\left([\tau>t]\left(X_{u}-X_{t}\right) \mid \mathscr{F}_{s}\right) \leq 0
$$

(Hint: You can use the fact that $\mathbf{E}(Z \mid \mathscr{H})=\mathbf{E}(\mathbf{E}(Z \mid \mathscr{G}) \mid \mathscr{H})$ for every σ algebras $\mathscr{H} \subset \mathscr{G}$ and then you can apply the supermartingale property).

Suggestion. Since $s \leq t$, we have that $\mathscr{F}_{s} \subset \mathscr{F}_{t}$ and so

$$
\mathbf{E}\left([\tau>t]\left(X_{u}-X_{t}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}\left(\mathbf{E}\left([\tau>t]\left(X_{u}-X_{t}\right) \mid \mathscr{F}_{t}\right) \mid \mathscr{F}_{s}\right) .
$$

Since $[\tau>t]$ is $\mathscr{F}_{t^{+}}=\mathscr{F}_{t^{-}}$-measurable, we have

$$
\mathbf{E}\left([\tau>t]\left(X_{u}-X_{t}\right) \mid \mathscr{F}_{t}\right)=[\tau>t] \mathbf{E}\left(X_{u}-X_{t} \mid \mathscr{F}_{t}\right) \leq 0
$$

by the supermartingale property. Therefore,

$$
\mathbf{E}\left([\tau>t]\left(X_{u}-X_{t}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}\left(\mathbf{E}\left([\tau>t]\left(X_{u}-X_{t}\right) \mid \mathscr{F}_{t}\right) \mid \mathscr{F}_{s}\right) \leq 0
$$

as well.
9. Let τ and be a simple stopping time, say $\tau \in\left\{t_{1}, \ldots, t_{n}\right\}$. Let us assume that $s=t_{0} \leq t_{1}<t_{2}<\cdots<t_{n}$. Show that and

$$
\mathbf{E}\left(X_{\tau} \mid \mathscr{F}_{s}\right) \leq X_{s} .
$$

(Hint: show

$$
X_{\tau}-X_{s}=\sum_{k=0}^{n-1}\left[\tau>t_{k}\right]\left(X_{t_{k+1}}-X_{t_{k}}\right)
$$

and use this identity with Problem 8.)
Suggestion. Suppose we have shown the identity of the hint. Then

$$
\mathbf{E}\left(X_{\tau}-X_{s} \mid \mathscr{F}_{s}\right)=\sum_{k=0}^{n-1} \mathbf{E}\left(\left[\tau>t_{k}\right]\left(X_{t_{k+1}}-X_{t_{k}}\right) \mid \mathscr{F}_{s}\right) \leq 0
$$

since using $s=s, t=t_{k}$ and $u=t_{k+1}$ we have exactly the case of Problem 8. But hen the claim follows, since

$$
\mathbf{E}\left(X_{\tau} \mid \mathscr{F}_{s}\right)=X_{s}+\mathbf{E}\left(X_{\tau}-X_{s} \mid \mathscr{F}_{s}\right) \leq X_{s}
$$

where we used that X_{s} is \mathscr{F}_{s}-measurable. So we only need to show the identity. Since τ is simple stopping time, we can write

$$
X_{\tau}-X_{s}=\sum_{k=0}^{n}\left[\tau=t_{k}\right]\left(X_{t_{k}}-X_{t_{0}}\right)=\sum_{k=1}^{n}\left[\tau=t_{k}\right] \sum_{j=0}^{k-1}\left(X_{t_{j+1}}-X_{t_{j}}\right)
$$

where we wrote the difference as a telescoping sum. Let's change the order of summations and we get

$$
X_{\tau}-X_{s}=\sum_{j=0}^{n-1} \sum_{k=j+1}^{n}\left[\tau=t_{k}\right]\left(X_{t_{j+1}}-X_{t_{j}}\right)
$$

Since

$$
\sum_{k=j+1}^{n}\left[\tau=t_{k}\right]=\left[\tau \in\left\{t_{j+1}, \ldots, t_{n}\right\}\right]=\left[\tau \geq t_{j+1}\right]=\left[\tau>t_{j}\right]
$$

the claim follows.
10. Let $X_{t}=e^{s B_{t}-s^{2} t / 2}$. Show that it is a martingale with respect to the history of Brownian motion. Hint: you are on right track if you have arrived to

$$
\mathbf{E}\left(X_{u} \mid \mathscr{F}_{t}\right)=e^{s B_{t}} e^{-s^{2} u / 2} \mathbf{E} e^{s B_{u-t}}
$$

Suggestion. First we verify that X is adapted, but this is evident, since $X_{t}=f\left(B_{t}\right)$ for $f(x)=e^{s x} e^{-s^{2} t / 2}$ which is continuous function.

Next we want to make sure that X_{t} is integrable. Since $X_{t} \geq 0$, we have

$$
\begin{aligned}
\mathbf{E}_{0} X_{t} & =c_{t} \int_{\mathbb{R}} e^{s x} e^{-s^{2} t / 2} e^{-x^{2} / 2 t} \mathrm{~d} x=c_{t} \int_{\mathbb{R}} e^{-\frac{1}{2 t}\left(x^{2}-2 s t x+s^{2} t^{2}\right)} \mathrm{d} x \\
& =c_{t} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2 t}} \mathrm{~d} x=1
\end{aligned}
$$

which also shows that the mean is constant, show we might have a martingale. But to verify that let's compute the conditional expectation

$$
\mathbf{E}_{0}\left(X_{u} \mid \mathscr{F}_{t}\right)=e^{s B_{t}-s^{2} u / 2} \mathbf{E}_{0}\left(e^{s\left(B_{u}-B_{t}\right)} \mid \mathscr{F}_{t}\right)=e^{s B_{t}} e^{-s^{2} u / 2} \mathbf{E} e^{s B_{u-t}}
$$

since $B_{u}-B_{t}$ is independent from \mathscr{F}_{t} and $B_{u}-B_{t} \sim B_{u-t}$. Since $e^{s B_{t}}=X_{t} e^{s^{2} t / 2}$, we have

$$
\mathbf{E}_{0}\left(X_{u} \mid \mathscr{F}_{t}\right)=X_{t} e^{-s^{2}(u-t) / 2} \mathbf{E}_{0} e^{s B_{u-t}}=X_{t} \mathbf{E}_{0} X_{u-t}=X_{t}
$$

since the mean is 1 .
11. Let $\tau_{a}=\inf \left\{t>0: B_{t}=a\right\}$ be the first hitting time of 1 -dimensional Brownian motion to the point a. Let $a<x<b$ and $X_{t}=B_{t}^{\tau_{\wedge} \wedge \tau_{b}}$. Show that X_{t} is a bounded martingale for every $x \in(a, b)$ where x is the starting point of X.
Suggestion. Let's verify first that X is bounded, i.e. we want to show that

$$
\sup _{t}\left|X_{t}\right| \leq M
$$

almost surely. When $t<\tau$, we know that B_{t} has to be between a and b, since B_{0} is. Therefore, when $X_{0}=x$ we have

$$
\sup _{t<\tau}\left|X_{t}\right| \leq M
$$

almost surely where $M=|a| \vee|b|$. When $t \geq \tau$, then either $X_{t}=a$ or $X_{t}=b$, and so

$$
\sup _{t}\left|X_{t}\right| \leq M
$$

almost surely.
Furthermore, the Lemma 5.9. says that $X^{\nu}=B^{\tau_{a} \wedge \tau_{b} \wedge \nu}$ is a martingale for every bounded stopping time ν, since B is right-continuous martingale and $\tau_{a} \wedge \tau_{b} \wedge \nu$ is a bounded stopping time. Since X^{ν} is a bounded martingale, we have by Optional Stopping Theorem that

$$
\mathbf{E}_{x} X_{\nu}=\mathbf{E}_{x} X_{\nu}^{\nu}=\mathbf{E}_{x} X_{0}
$$

and hence Lemma 5.2 . says that X is martingale itself.
12. Assume the same as in 11. Show that

$$
a \mathbf{P}_{x}\left(\tau_{a}<\tau_{b}\right)+b \mathbf{P}_{x}\left(\tau_{b}<\tau_{a}\right)=x
$$

and show that

$$
\mathbf{P}_{x}\left(\tau_{a}<\tau_{b}\right)=\frac{b-x}{b-a}=1-\mathbf{P}_{x}\left(\tau_{a}>\tau_{b}\right)
$$

(Hint: Optional Stopping Theorem for a bounded martingale. For the latter explain first why $\mathbf{P}_{x}\left(\tau_{a}=\tau_{b}\right)=0$ and then you have two equations for the probabilities).
Suggestion. We know that $X=B^{\tau_{a} \wedge \tau_{b}}$ is a bounded martingale for every starting point $x \in(a, b)$ by Problem 11. Therefore, we can use the Optional Stopping Theorem and we get that

$$
\mathbf{E}_{x} X_{\tau_{a} \wedge \tau_{b}}=\mathbf{E}_{x} X_{0}=x .
$$

This means that

$$
x=\mathbf{E}_{x} B_{\tau_{a} \wedge \tau_{b}}=a \mathbf{P}_{x}\left(\tau_{a}<\tau_{b}\right)+b \mathbf{P}_{x}\left(\tau_{b}<\tau_{a}\right)+\infty \mathbf{P}_{x}\left(\tau_{a}=\tau_{b}=\infty\right)
$$

since $\tau_{a}=\tau_{b}<\infty$ cannot happen, since Brownian motion cannot be at the two places at the same time. The third option must vanish, since left-hand side is finite. This verifies the first claim.

Also the vanishing of the third term implies $\mathbf{P}_{x}\left(\tau_{a}=\tau_{b}\right)=0$ and so

$$
\mathbf{P}_{x}\left(\tau_{a}<\tau_{b}\right)+\mathbf{P}_{x}\left(\tau_{b}<\tau_{a}\right)=1
$$

Now we have two equations

$$
\left\{\begin{array}{l}
p a+q b=x \\
p+q=1
\end{array}\right.
$$

where $p=\mathbf{P}_{x}\left(\tau_{a}<\tau_{b}\right)$ and $q=\mathbf{P}_{x}\left(\tau_{b}<\tau_{a}\right)$ which has a unique solution

$$
\left\{\begin{array}{l}
p=\frac{b-x}{b-a} \\
q=\frac{x-a}{b-a}
\end{array}\right.
$$

