Department of Mathematics and Statistics

Stochastic processes on domains

Suggestions to excercise problem sheet 2

Note. In the Problems 1-10 the j, k and n are always integers.

1. Let $\left(P_{t, x}\right)$ be as in Lemma 3.14 in Lecture notes (page 23). Let

$$
\mu_{\left(t_{1}, \ldots, t_{n}\right)}^{x}\left(A_{1} \times \cdots \times A_{n}\right)=\int_{A_{1}} P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right) \ldots \int_{A_{n}} P_{t_{n}-t_{n-1}, x_{n-1}}\left(\mathrm{~d} x_{n}\right)
$$

for every $x \in S$, for every $n \in \mathbb{N}_{+}$, for every $t_{1}<\cdots<t_{n}$ and for every $A_{1}, \ldots, A_{n} \in$ \mathscr{S}. Let $\left(A_{n}\right) \subset \mathscr{S}$ be a sequence of sets in \mathscr{S}. Define $B_{k, j}, C_{k, j} \in \mathscr{S}$ as $\left[B_{k, j}\right]=$ $\left[A_{k}\right][k \neq j]+[S][k=j]$. and $\left[C_{k, j}\right]=\left[A_{k}\right][k<j]+\left[A_{k-1}\right][k>j]$. Let $\pi_{j, n}\left(t_{1}, \ldots, t_{n}\right)=\left(s_{1}, \ldots, s_{n-1}\right)$ where $s_{k}=t_{k}[k<j]+t_{k-1}[k>j]$. Show that the measures $\mu_{\left(t_{1}, \ldots, t_{n}\right)}^{x}$ are consistent, i.e.
i) show that

$$
\mu_{\left(t_{1}, \ldots, t_{n}\right)}^{x}\left(B_{1, j} \times \cdots \times B_{n, j}\right)=\mu_{\pi_{j, n}\left(t_{1}, \ldots, t_{n}\right)}^{x}\left(C_{1, j} \times \cdots \times C_{n-1, j}\right)
$$

for every $n \in \mathbb{N}$, for every $1 \leq j \leq n$.
Suggestion. There is an unfortunate misprint s_{k} should be $s_{k}=t_{k}[k<j]+t_{k+1}[k \geq$ $j]$ and similarly $C_{k, j}$ should have $\left[A_{k+1}\right][k \geq j]$. Furthermore, the n should be at least 2 for this to be meaningful.

Therefore, this problem is considered to solved by everyone.
With this change let's look for different values of n. First is $n=2$. Then we have two equations

$$
\mu_{\left(t_{1}, t_{2}\right)}^{x}\left(A_{1} \times S\right)=\mu_{\left(t_{1}\right)}^{x}\left(A_{1}\right) .
$$

and

$$
\mu_{\left(t_{1}, t_{2}\right)}^{x}\left(S \times A_{2}\right)=\mu_{\left(t_{2}\right)}^{x}\left(A_{2}\right) .
$$

Therefore, by definition these reduce to equations

$$
\int_{A_{1}} P_{t_{2}-t_{1}, x_{1}}(S) P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right)=P_{t_{1}, x}\left(A_{1}\right)
$$

and

$$
\int_{S} P_{t_{2}-t_{1}, x_{1}}\left(A_{2}\right) P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right)=P_{t_{2}, x}\left(A_{2}\right)
$$

The first one follows since $P_{t, x}$ is a probability measure for every t and x and hence $P_{t_{2}-t_{1}, x_{1}}(S)=1$ and thus

$$
\int_{A_{1}} P_{t_{2}-t_{1}, x_{1}}(S) P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right)=\int_{A_{1}} P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right)=P_{t_{1}, x}\left(A_{1}\right) .
$$

The second one is the Chapman-Kolmogorov equation (since $t_{2}-t_{1}+t_{1}=t_{2}$) so it holds as well. Let's suppose that the claim holds for all n (say less than N) and let's consider the case $n+1$. So we have $n+1$ equations to show. Suppose $k=n+1$ first. Then

$$
\begin{aligned}
\mu_{\left(t_{1}, t_{2}, \ldots, t_{n+1}\right)}^{(x)}\left(A_{1} \times A_{2} \times \cdots \times S\right) & =\int_{A_{1}} \ldots \int_{A_{n}} P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right) \ldots P_{t_{n}^{\prime}, x_{n-1}}\left(A_{n}\right) P_{t_{n+1}^{\prime}, x_{n}}(S) \\
& =\mu_{\left(t_{1}, \ldots, t_{n}\right)}^{(x)}\left(A_{1} \times \cdots \times A_{n}\right)
\end{aligned}
$$

as in the case when $n=2$. Next suppose $1<k \leq n$. Since the equation is then of form

$$
\int_{A_{1}} \ldots \int_{A_{k-1}} P_{t_{k-1}^{\prime}}\left(\mathrm{d} x_{k-1}\right) f\left(x_{k-1}\right)=\int_{A_{1}} \ldots \int_{A_{k-1}} P_{t_{k-1}^{\prime}}\left(\mathrm{d} x_{k-1}\right) g\left(x_{k-1}\right)
$$

it is enough to show that $f=g$. Now we notice that

$$
f\left(x_{k-1}\right)=\mu_{\left(t_{k}^{\prime}, v_{k+1}, t_{k+2}^{\prime}, \cdots, t_{n+1}^{\prime}\right)}^{\left(x_{k-1}\right)}\left(S \times A_{k+1} \times \cdots \times A_{n+1}\right)
$$

and

$$
g\left(x_{k-1}\right)=\mu_{\left(v_{k+1}, t_{k+2}^{\prime}, \cdots, t_{n+1}^{\prime}\right)}^{\left(x_{k-1}\right)}\left(A_{k+1} \times \cdots \times A_{n+1}\right)
$$

where $v_{k+1}=t_{k+1}-t_{k-1}$. Since now there are at most $n+1-1$ times and sets left, we get that $f=g$ by induction assumption.

So we are left with the equation for $k=1$. This time we notice that the equation is of form

$$
\int_{S} P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right) \int_{A_{2}} P_{t_{2}^{\prime}, x}\left(\mathrm{~d} x_{2}\right) f\left(x_{2}\right)=\int_{A_{2}} P_{t_{2}, x}\left(\mathrm{~d} x_{2}\right) f\left(x_{2}\right)
$$

Notice that if f would be a constant function, this would be the Chapman-Kolmogorov equation. Now Chapman-Kolmogorov equation implies for simple functions f that

$$
\int_{S} P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right) \int_{A_{2}} P_{t_{2}^{\prime}, x}\left(\mathrm{~d} x_{2}\right) f\left(x_{2}\right)=\int_{A_{2}} P_{t_{2}, x}\left(\mathrm{~d} x_{2}\right) f\left(x_{2}\right)
$$

holds. And from this the claim follows by the monotone convergence.
2. Show that the transition probability operator of Brownian motion $P_{t}^{(B)}$ (see pages 21-22) satisfies

$$
\lim _{t \rightarrow 0} P_{t}^{(B)} f(x)=f(x)
$$

for every $x \in \mathbb{R}^{d}$ and every bounded and continuous f. (Hint: change of variables so that t appears only in the argument of f and dominated convergence).
Suggestion. By definition

$$
P_{t}^{(B)} f(x)=(2 \pi t)^{-d / 2} \int_{\mathbb{R}^{d}} f(y) e^{-\frac{1}{2}|x-y|^{2} / t} \mathrm{~d} y .
$$

By change of variable $z=(y-x) / \sqrt{t}$ we see that $f(y)=f(x+z \sqrt{t})$, the exponent $|x-y|^{2} / t=|z|^{2}$ and the $\mathrm{d} z=t^{-d / 2} \mathrm{~d} y$. So

$$
P_{t}^{(B)} f(x)=(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} f(x+z \sqrt{t}) e^{-\frac{1}{2}|z|^{2}} \mathrm{~d} z
$$

Since f is bounded, and $e^{-\frac{1}{2}|z|^{2}}$ is integrable, we have by dominated convergence that

$$
\begin{aligned}
\lim _{t \rightarrow 0} P_{t}^{(B)} f(x) & =(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} \lim _{t \rightarrow 0} f(x+z \sqrt{t}) e^{-\frac{1}{2}|z|^{2}} \mathrm{~d} z \\
& =f(x)(2 \pi)^{-d / 2} \int_{\mathbb{R}^{d}} e^{-\frac{1}{2}|z|^{2}} \mathrm{~d} z
\end{aligned}
$$

Now the integral on the right is the Gaussian integral and so the right-hand side is 1 and the claim follows.
3. Show that the transition probability operator of Brownian motion $P_{t}^{(B)}$ (see 2 . above) satisfies

$$
\lim _{t \rightarrow 0}\left\|P_{t}^{(B)} f-f\right\|=\lim _{t \rightarrow 0} \sup _{x \in \mathbb{R}^{d}}\left|P_{t}^{(B)} f(x)-f(x)\right|=0
$$

for every $x \in \mathbb{R}^{d}$ and every $f \in C_{\infty}\left(\mathbb{R}^{d}\right)$. (Hint: show that there is large R such that outside ball of radius R the difference is small and 2.)
Suggestion. Let $\varepsilon>0$. Choose $R_{0}>0$ so that $|f(x)|<\varepsilon$ for every $|x|>R_{0}$. So let's take any point x, such that $|x|>R>R_{0}$ and let's divide the integration in to two parts

$$
\left|P_{t}^{(B)} f(x)\right| \leq(2 \pi t)^{-d / 2} \int_{|y| \leq r} \mathrm{~d} y \cdots+(2 \pi t)^{-d / 2} \int_{|y|>r} \mathrm{~d} y \ldots
$$

Since f is bounded, say $|f(y)| \leq M$ for every $y \in \mathbb{R}^{d}$, we can estimate the first one by using polar coordinates to be at most

$$
M(2 \pi t)^{-d / 2} \int_{0}^{r} e^{-(\lambda-|x|)^{2} / 2} \lambda^{d-1} \mathrm{~d} \lambda
$$

If $r<R / 2$, say, then $|\lambda-|x||=|x|-\lambda>R / 2$ and hence $-(\lambda-|x|)^{2} \leq-R^{2} / 4$. So we may estimate the first integral by

$$
M^{\prime} e^{-R^{2} / 32} r^{d} \leq M^{\prime \prime} e^{-R^{2} / 8} R^{d}
$$

Now the second integral is easy to estimate, if we assume that $r>R_{0}$, since then $|f(y)|<\varepsilon$ for every $|y|>r$ and the remainding part is just the Gaussian integral. So if we can choose $r<R / 2$ and $r>R_{0}$, then

$$
\left|P_{t}^{(B)} f(x)\right| \lesssim \varepsilon+e^{-R^{2} / 8} R^{d} .
$$

This means that the estimate can be done provided that $R_{0}<r<R / 2$ which means that the estimate holds whenever $R>2 R_{0}$. Moreover, we can make this estimate smaller than 2ε for large enough R. Let's call such an R as R_{1}.

Now for R_{1} we have

$$
\left|P_{t}^{(B)} f(x)-f(x)\right| \leq 2 \varepsilon+|f(x)| \leq 3 \varepsilon
$$

for every $|x|>R_{1}$. Since the set $|x| \leq R_{1}$ is bounded and closed, i.e. compact, we know that the pointwise convergence implies uniform convergence so that

$$
\lim _{t \rightarrow 0} \sup _{|x| \leq R_{1}}\left|P_{t}^{(B)} f(x)-f(x)\right|=0
$$

if

$$
\lim _{t \rightarrow 0}\left|P_{t}^{(B)} f(x)-f(x)\right|=0
$$

for every $|x| \leq R_{1}$. But this we know from the Problem 2. Therefore, if we choose $t_{0}>0$ small enough, we have that

$$
\sup _{|x| \leq R_{1}}\left|P_{t}^{(B)} f(x)-f(x)\right| \leq 3 \varepsilon
$$

for every $t<t_{0}$ and so

$$
\sup _{x \in \mathbb{R}^{d}}\left|P_{t}^{(B)} f(x)-f(x)\right| \leq 3 \varepsilon
$$

for every $t<t_{0}$. This implies the claim.

Some theory. Suppose $\left(X_{t}\right)$ is a Markov process and suppose there exists a shift operators $\theta_{s}: \Omega \rightarrow \Omega$ for every $s>0$ with the property $X_{t} \circ \theta_{s}(\omega)=X_{t}\left(\theta_{s}(\omega)\right):=$ $X_{t+s}(\omega)$ for every $t \geq 0$ and for every $\omega \in \Omega$. This way we can easily express that general idea of forgetting the past and the restarting the clock.
Note. In Problems 4, 5, 6 and 7 the triplet $\left(X_{t}, \mathscr{F}_{t},\left\{\mathbf{P}_{x}\right\}\right)$ is a Markov process. The algebra \mathscr{A}_{∞} and the σ-algebre \mathscr{F}_{∞} are defined in the proof of Lemma 3.14 on page 24. The Dynkin system is defined in the proof of Lemma 3.14 on page 25.
4. Let $s<t_{1}<\cdots<t_{n}$. Show that the time stationary Markov property for $\left(X_{t}\right)$ with respect to $\left(\mathscr{F}_{t}\right)$ implies that

$$
\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}}\right) \ldots f_{n}\left(X_{t_{n}}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}}\left(f_{1}\left(X_{t_{1}-s}\right) \ldots f_{n}\left(X_{t_{n}-s}\right)\right)
$$

for every $x \in S$ and for every f_{j} bounded and measurable function with $j=1, \ldots, n$. You can assume that this is know for $n=1$.
Suggestion. When $n=1$ this claim states that

$$
\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}}\right) \mid \widetilde{F}_{s}\right)=\mathbf{E}_{X_{s}} f_{1}\left(X_{t_{1}-s}\right)
$$

This is the Markov property in the integrated form since suppose f_{1} is a simple function $a_{1}\left[B_{1}\right]+\cdots+a_{n}\left[B_{n}\right]$. Then

$$
\begin{aligned}
\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}}\right) \mid \mathscr{F}_{s}\right) & =\sum_{k} a_{k} \mathbf{E}_{x}\left(\left[X_{t_{1}} \in B_{k}\right] \mid \mathscr{F}_{s}\right)=\sum_{k} a_{k} \mathbf{E}_{X_{s}}\left[X_{t_{1}-s} \in B_{k}\right] \\
& =\mathbf{E}_{X_{s}} f_{1}\left(X_{t_{1}-s}\right)
\end{aligned}
$$

Therefore, by the usual procedure we can use monotone convergence to show this for every bounded and measurable function f_{1}. But this part was something you could assume to be known.

Assume that the claim holds for $N \leq n$ and let's consider the case $N=n+$ 1. Since $f_{1}\left(X_{t_{1}}\right)$ is $\mathscr{F}_{t_{1}}$-measurables, we have by the property of the conditional expectation that

$$
\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}}\right) \ldots f_{n}\left(X_{t_{n}}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}}\right) \mathbf{E}_{x}\left(f_{2}\left(X_{t_{2}}\right) \ldots f_{n}\left(X_{t_{n}}\right) \mid \mathscr{F}_{t_{1}}\right) \mid \mathscr{F}_{s}\right)
$$

If you don't remember this I'll verify this in the end. But now we may use the induction assumption and we have that

$$
\mathbf{E}_{x}\left(f_{2}\left(X_{t_{2}}\right) \ldots f_{n}\left(X_{t_{n}}\right) \mid \mathscr{F}_{t_{1}}\right)=\mathbf{E}_{X_{t_{1}}} f_{2}\left(X_{t_{2}-t_{1}}\right) \ldots f_{n}\left(X_{t_{n}-t_{1}}\right)=g\left(X_{t_{1}}\right)
$$

for every x. So we have obtained that

$$
\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}}\right) \ldots f_{n}\left(X_{t_{n}}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}}\right) g\left(X_{t_{1}}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}} f_{1}\left(X_{t_{1}-s}\right) g\left(X_{t_{1}-s}\right)
$$

where the last identity was shown first (or assumed to be known). Now recall

$$
g(x)=\mathbf{E}_{x} f_{2}\left(X_{t_{2}-t_{1}}\right) \ldots f_{n}\left(X_{t_{n}-t_{1}}\right)
$$

and so again by the induction assumption

$$
g\left(X_{t_{1}-s}\right)=\mathbf{E}_{X_{t_{1}-s}} f_{2}\left(X_{t_{2}-t_{1}}\right) \ldots f_{n}\left(X_{t_{n}-t_{1}}\right)=\mathbf{E}_{x}\left(f_{2}\left(X_{t_{2}-s}\right) \ldots f_{n}\left(X_{t_{n}-s}\right) \mid \mathscr{F}_{t_{1}-s}\right)
$$

for every x. Especially,

$$
\begin{aligned}
\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}}\right) \ldots f_{n}\left(X_{t_{n}}\right) \mid \mathscr{F}_{s}\right) & =\mathbf{E}_{X_{s}} f_{1}\left(X_{t_{1}-s}\right) \mathbf{E}_{X_{s}}\left(f_{2}\left(X_{t_{2}-s}\right) \ldots f_{n}\left(X_{t_{n}-s}\right) \mid \mathscr{F}_{t_{1}-s}\right) \\
& =\mathbf{E}_{X_{s}} f_{1}\left(X_{t_{1}-s}\right) f_{2}\left(X_{t_{2}-s}\right) \ldots f_{n}\left(X_{t_{n}-s}\right)
\end{aligned}
$$

where the latter identity follows again from the fact that $f_{1}\left(X_{t_{1}-s}\right)$ is $\mathscr{F}_{t_{1}-s}$-measurable by the same property of conditional expectation we used once already.

We were using two properties of conditional expectation. One is $\mathbf{E}(X Y \mid \mathscr{G})=$ $X \mathbf{E}(Y \mid \mathscr{G})$ when X is \mathscr{G}-measurable and the integration makes sense. This was one of the Problems in the Excercise Sheet 1. And the second is $\mathbf{E}(X \mid \mathscr{G})=$ $\mathbf{E}(\mathbf{E}(X \mid \mathscr{H}) \mid \mathscr{G})$ for every sub- σ-algebra $\mathscr{G} \subset \mathscr{H}$. This follows since this is equivalent with

$$
\mathbf{E}[A] X=\mathbf{E}[A] \mathbf{E}(X \mid \mathscr{H})
$$

for every $A \in \mathscr{G}$. When $A \in \mathscr{G} \subset \mathscr{H}$, we see that this holds by the definition of the conditional expectation with respect to \mathscr{H}.
5. Let $0<t_{1}<\cdots<t_{n}$ and let $A=\left\{X_{t_{1}} \in A_{1}, \ldots, X_{t_{n}} \in A_{n}\right\} \in \mathscr{A}_{\infty}$. Show that the time stationary Markov property for $\left(X_{t}\right)$ with respect to $\left(\mathscr{F}_{t}\right)$ implies that

$$
\begin{equation*}
\mathbf{E}_{x}\left([A] \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}}[A] \tag{0.1}
\end{equation*}
$$

for every $x \in S$. (Hint: try writing $[A] \circ \theta_{s}$ as a form of Problem 4. from the above definition of the shift operator)
Suggestion. Note that

$$
[A](\omega)=\left[X_{t_{1}}(\omega) \in A_{1}, \ldots X_{t_{n}}(\omega) \in A_{n}\right]
$$

and that

$$
\begin{aligned}
{[A] \circ \theta_{s}(\omega) } & =\left[X_{t_{1}}\left(\theta_{s}(\omega)\right) \in A_{1}, \ldots X_{t_{n}}\left(\theta_{s}(\omega)\right) \in A_{n}\right] \\
& =\left[X_{t_{1}+s}(\omega) \in A_{1}, \ldots X_{t_{n}+s}(\omega) \in A_{n}\right]
\end{aligned}
$$

This means that the claim is equivalent with

$$
\mathbf{P}_{x}\left(X_{t_{1}+s} \in A_{1}, \ldots X_{t_{n}+s} \in A_{n} \mid \mathscr{F}_{s}\right)=\mathbf{P}_{X_{s}}\left(X_{t_{1}} \in A_{1}, \ldots X_{t_{n}} \in A_{n}\right)
$$

If we denote $t_{j}^{\prime}=t_{j}+s$ and denote $f_{j}=\left[A_{j}\right]$ the claim becomes

$$
\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}^{\prime}}\right) \ldots f_{n}\left(X_{t_{n}^{\prime}}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}}\left(f_{1}\left(X_{t_{1}^{\prime}-s}\right) \ldots f_{n}\left(X_{t_{n}^{\prime}-s}\right)\right)
$$

which holds by Problem 4.
6. Let \mathscr{G} be the family of sets

$$
\mathscr{G}=\left\{A \in \mathscr{F}_{\infty}: A \text { satifies the identity (0.1) }\right\}
$$

Show that \mathscr{G} is a Dynkin system and that it coincides with \mathscr{F}_{∞}. (Hint: see proof of Lemma 3.14).
Suggestion. We need to verify that
i) $\Omega \in \mathscr{G}$,
ii) $A^{C} \in \mathscr{G}$, if $A \in \mathscr{G}$,
ii) $\bigcup_{k} A_{k} \in \mathscr{G}$, if $\forall: A_{k} \in \mathscr{G}$ and $A_{k} \cap A_{j}=\emptyset$ for $j \neq k$.

The first one follows, since $\Omega \in \mathscr{A}_{\infty}$ and we proved that in Problem 5. The second claim is that

$$
\mathbf{E}_{x}\left(\left[A^{C}\right] \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}}\left[A^{C}\right]
$$

if $A \in \mathscr{G}$. Since $\left[A^{C}\right]=1-[A]$ the claim becomes

$$
1-\mathbf{E}_{x}\left([A] \circ \theta_{s} \mid \mathscr{F}_{s}\right)=1-\mathbf{E}_{X_{s}}[A]
$$

which is equivalent with $A \in \mathscr{G}$.
The third case is similar, since for disjoint sequence of sets

$$
\left[\bigcup_{k} A_{k}\right]=\sum_{k}\left[A_{k}\right]
$$

so the claim of $i i i$) becomes

$$
\sum_{k} \mathbf{E}_{x}\left(\left[A_{k}\right] \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\sum_{k} \mathbf{E}_{X_{s}}\left[A_{k}\right]
$$

when $\left(A_{k}\right) \subset \mathscr{G}$ is sequence of disjoint sets. Since $A_{k} \in \mathscr{G}$ means that

$$
\mathbf{E}_{x}\left(\left[A_{k}\right] \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}}\left[A_{k}\right]
$$

the claim follows. Therefore, \mathscr{G} is a Dynkin system. By the proof of Lemma 3.14. we know that $\sigma\left(\mathscr{A}_{\infty}\right)=\mathscr{F}_{\infty}$ and by Dynkin's π - λ Theorem, $\mathscr{G} \supset \sigma\left(\mathscr{A}_{\infty}\right)=\mathscr{F}_{\infty}$. But since $\mathscr{G} \subset \mathscr{F}_{\infty}$, we have that $\mathscr{G}=\mathscr{F}_{\infty}$ and the claim follows.
7. Let Z be a \mathscr{F}_{∞}-measurable bounded random variable. Show that the time stationary Markov property for $\left(X_{t}\right)$ with respect to $\left(\mathscr{F}_{t}\right)$ implies that

$$
\mathbf{E}_{x}\left(Z \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}} Z
$$

for every $s \geq 0$. (Hint: first simple Z, then the general case).
Suggestion. When $Z=a_{1}\left[A_{1}\right]+\ldots a_{n}\left[A_{n}\right]$ for $A_{j} \in \mathscr{F}_{\infty}$, we know by Problem 6 . that $A_{j} \in \mathscr{G}$ and therefore,

$$
\mathbf{E}_{x}\left(\left[A_{k}\right] \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}}\left[A_{k}\right]
$$

This implies that

$$
\mathbf{E}_{x}\left(Z \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\sum_{k} a_{k} \mathbf{E}_{x}\left(\left[A_{k}\right] \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\sum_{k} a_{k} \mathbf{E}_{X_{s}}\left[A_{k}\right]=\mathbf{E}_{X_{s}} Z
$$

The general case follows by monotone convergence.
8. Suppose Z is an integrable real valued random variable and $\left(\mathscr{F}_{t}\right)$ is a filtration. Show that a process $\left(X_{t}\right)$ which is defined as

$$
X_{t}:=\mathbf{E}\left(Z \mid \mathscr{F}_{t}\right)
$$

is a martingale with respect to the filtration $\left(\mathscr{F}_{t}\right)$.
Suggestion. We first need to check that X is adapted, $\mathbf{E} \| X_{t}<\infty$ for every t and then the martingale property.

Since X_{t} is conditional expectation with respect to the filtration $\left(\mathscr{F}_{t}\right)$, it is by the definition of conditional expectation measurable \mathscr{F}_{t}-measurable. Thus, X is adapted.

Next, since Z is integrable, we can write $\left|\mathbf{E}\left(Z \mid \mathscr{F}_{t}\right)\right| \leq \mathbf{E}\left(|Z| \mid \mathscr{F}_{t}\right)$ and therefore,

$$
\mathbf{E}\left|X_{t}\right| \leq \mathbf{E} \mathbf{E}\left(|Z| \mid \mathscr{F}_{t}\right)=\mathbf{E}|Z|<\infty,
$$

and hence X_{t} is integrable for every t as well.
The martingale property follows from the property we have used couple of times (see Problem 4.). By definition of X_{t} we have

$$
\mathbf{E}\left(X_{t} \mid \mathscr{F}_{s}\right)=\mathbf{E}\left(\mathbf{E}\left(Z \mid \mathscr{F}_{t}\right) \mid \mathscr{F}_{s}\right) .
$$

Now since $\mathscr{F}_{s} \subset \mathscr{F}_{t}$, we have that

$$
\mathbf{E}\left(\mathbf{E}\left(Z \mid \mathscr{F}_{t}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}\left(Z \mid \mathscr{F}_{s}\right)=X_{s}
$$

and the claim follows. This is a very important class of martingales, actually by Theorem 5.3. every uniformly integrable martingale is of this type and we see from this Problem that we can find a lot of martingales given a filtration.
9. Let τ_{1} and τ_{2} be $\left(\mathscr{F}_{t}\right)$-stopping times. Show that

$$
\tau_{1} \wedge \tau_{2}, \quad \tau_{1} \vee \tau_{2}, \quad \text { and } \quad \tau_{1}+\tau_{2}
$$

are $\left(\mathscr{F}_{t}\right)$-stopping times. (Hint: try to express the conditions as unions and intersections of conditions involving only τ_{1} and τ_{2}. Also discrete time versions are fine.)

Suggestion.

We will show first that $\left\{\tau_{1} \wedge \tau_{2} \leq t\right\} \in \mathscr{F}_{t}$. If $\tau_{1} \wedge \tau_{2} \leq t$, then either $\tau_{1} \leq t$ or $\tau_{2} \leq t$ (or both). Moreover, if $\tau_{1} \leq t$ or $\tau_{2} \leq t$, then the minimum is also $\leq t$, so

$$
\left\{\tau_{1} \wedge \tau_{2} \leq t\right\}=\left\{\tau_{1} \leq t\right\} \cup\left\{\tau_{2} \leq t\right\} \in \mathscr{F}_{t}
$$

since τ_{1} and τ_{2} are stopping times and therefore both of the events on the right-hand side and thus also their union is in \mathscr{F}_{t}.

We will show first that $\left\{\tau_{1} \vee \tau_{2} \leq t\right\} \in \mathscr{F}_{t}$. If $\tau_{1} \vee \tau_{2} \leq t$, then both $\tau_{1} \leq t$ and $\tau_{2} \leq t$. Moreover, if both $\tau_{1} \leq t$ and $\tau_{2} \leq t$, then the maximum is also $\leq t$, so

$$
\left\{\tau_{1} \vee \tau_{2} \leq t\right\}=\left\{\tau_{1} \leq t\right\} \cap\left\{\tau_{2} \leq t\right\} \in \mathscr{F}_{t}
$$

since τ_{1} and τ_{2} are stopping times and therefore both of the events on the right-hand side and thus also their union is in \mathscr{F}_{t}.

Let's do the discrete time version first and then the general case.
Now $\tau_{1} \in\left\{t_{1}, \ldots, t_{n}\right\}$ and $\tau_{2} \in\left\{s_{1}, \ldots, s_{m}\right\}$ for some $0 \leq t_{1}<\cdots<t_{n}$ and $0 \leq s_{1}<\cdots<s_{m}$.

Now $\tau_{1}+\tau_{2} \in\left\{t_{j}+s_{k}: j, k\right\}$ and $\tau_{1}+\tau_{2} \leq t$, when ever $\tau_{1}=t_{j}$ and $\tau_{2}=s_{k}$ satisfy the extra conditions $0 \leq t_{j} \leq t$ following $0 \leq s_{k} \leq t-t_{j}$. So

$$
\left\{\tau_{1}+\tau_{2} \leq t\right\}=\bigcup_{t_{j} \leq t} \bigcup_{s_{k} \leq t-t_{j}}\left\{\tau_{1}=t_{j}, \tau_{2}=s_{k}\right\}
$$

For every fixed $t_{j} \leq t$ and $s_{k} \leq t-t_{j}$ the event on the right is in $\mathscr{F}_{u} \subset \mathscr{F}_{t}$, where $u=t_{j} \vee s_{k} \leq t$. So everything on the right is in \mathscr{F}_{t} so the claim follows in the discrete case for simple stopping times.

We need to reformulate the right-hand side for the general case since we cannot expect to have equalities, since only inequalities generalise. First we take the union over s_{k} for fixed t_{j} and we notice that

$$
\left\{\tau_{1}+\tau_{2} \leq t\right\}=\bigcup_{t_{j} \leq t}\left\{\tau_{1}=t_{j}, \tau_{2} \leq t-t_{j}\right\}
$$

So now τ_{2} is fine. Next we notice that if $\tau_{2} \leq t-t_{j}$, then any $\tau_{1}=t_{l}$ for $t_{l} \leq t_{j}$ must actually appear on the right, since $\tau_{2}+\tau_{1} \leq t-t_{j}+t_{l}<t$. So we can write the above as

$$
\left\{\tau_{1}+\tau_{2} \leq t\right\}=\bigcup_{t_{j} \leq t}\left\{\tau_{1} \leq t_{j}, \tau_{2} \leq t-t_{j}\right\}
$$

This is a good formulation for generalization and first we good try

$$
\left\{\tau_{1}+\tau_{2} \leq t\right\}=\bigcup_{s \leq t}\left\{\tau_{1} \leq s, \tau_{2} \leq t-s\right\}
$$

We notice that both sides are equal and for every fixed $s \leq t$ the event on the righthand side is in \mathscr{F}_{t}, but there is one issue left and that's the uncountability of the union.

But, fortunately, this is almost easy to fix, namely by restricting $s \in \mathbb{Q}$. Then

$$
\left\{\tau_{1}+\tau_{2} \leq t\right\}=\bigcup_{s<t, s \in \mathbb{Q}}\left\{\tau_{1} \leq s, \tau_{2} \leq t-s\right\} \cup\left\{\tau_{1}=t, \tau_{2}=0\right\}
$$

holds as well, since now the right-hand side is by previous a subset of $\left\{\tau_{1}+\tau_{2} \leq t\right\}$, but if $\tau_{1}(\omega)+\tau_{2}(\omega) \leq t$, then either $\tau_{1}(\omega)=t$ or $\tau_{1}(\omega)<t$. The former case is the special case on the right and in the latter case we can find a rational s such that $\tau_{1}(\omega) \leq s<t$ and $\tau_{2}(\omega)+s<t$.

Why? Well the first condition says that $s \in\left[\tau_{1}(\omega), t\right)$ and the latter says that $s \in\left(-\infty, t-\tau_{2}(\omega)\right)$. These intervals intersect if and only if $t-\tau_{2}(\omega)>\tau_{1}(\omega)$ which is equivalent with $\tau_{1}(\omega)+\tau_{2}(\omega)<t$.

Therefore, we have

$$
\left\{\tau_{1}+\tau_{2} \leq t\right\}=\bigcup_{s<t, s \in \mathbb{Q}}\left\{\tau_{1} \leq s, \tau_{2} \leq t-s\right\} \cup\left\{\tau_{1}=t, \tau_{2}=0\right\}
$$

and the right-hand side is a countable union of events in \mathscr{F}_{t}.
10. Show that the \mathscr{F}_{τ} is a σ-algebra, when τ is a $\left(\mathscr{F}_{t}\right)$-stopping time.

Suggestion. Now by definition $\mathscr{F}_{\tau}=\left\{A: \forall t \geq 0: A \cap\{\tau \leq t\} \in \mathscr{F}_{t}\right\}$. We prove this by verifyng that \mathscr{F}_{τ} satisfies the axioms of the σ-algebra.
i) $\Omega \in \mathscr{F}_{\tau}$, since $\Omega \cap\{\tau \leq t\}=\{\tau \leq t\}$ and this is in \mathscr{F}_{t} since τ is a proper stopping time.
ii) Suppose $A \in \mathscr{F}_{\tau}$. Then

$$
\left\{A^{C}, \tau \leq t\right\}=\{\tau \leq t\} \backslash\{A, \tau \leq t\}=\{\Omega, \tau \leq t\} \cap\{A, \tau \leq t\}^{C}
$$

Now the events on the right-hand side are in \mathscr{F}_{t} since $\Omega, A \in \mathscr{F}_{\tau}$ so we deduce that $A^{C} \in \mathscr{F}_{\tau}$.
iii) Suppose $\left(A_{k}\right) \subset \mathscr{F}_{\tau}$. Since

$$
\{\tau \leq t\} \cap \bigcup_{k} A_{k}=\bigcup_{k}\left\{A_{k}, \tau \leq t\right\}
$$

and by assumption everything on the right is in \mathscr{F}_{t} we have that $\bigcup A_{k} \in \mathscr{F}_{\tau}$ as well.
11. Let $\left(\mathscr{F}_{t}\right)$ be a filtration. Show that the $\left(\mathscr{F}_{t^{+}}\right)$is right-continuous filtration.

Suggestion. To show that $\left(\mathscr{G}_{t}\right)=\left(\mathscr{F}_{t^{+}}\right)$is right-continuous filtration, we need to show that

$$
\bigcap_{s>t} \mathscr{G}_{s}=\mathscr{G}_{t} .
$$

Clearly, $\mathscr{G}_{t} \subset \cap \mathscr{G}_{s}$ if we know that $\left(\mathscr{G}_{t}\right)$ is a filtration. So let's suppose $A \in \cap \mathscr{G}_{s}$. By definition, $A \in \mathscr{F}_{s^{+}}$for every $s>t$. Which by definition means that $A \in \mathscr{F}_{u}$ for every $u>s$ and every $s>t$. But this implies that $A \in \mathscr{F}_{u}$ for every $u>t$ and
therefore, $A \in \mathscr{F}_{t^{+}}=\mathscr{G}_{t}$. So, at least if we know that $\left(\mathscr{G}_{t}\right)$ is a filtration, then it is right-continuous.

For completeness, let's show that \mathscr{G}_{t} is a σ-algebra.
i) The $\Omega \in \mathscr{G}_{t}$ is quite easy to verify, since $\Omega \in \mathscr{F}_{s}$ for every s, and therefore, also in every \mathscr{F}_{s} for $s>t$.
ii) Next, if $A \in \mathscr{G}_{t}$, then $A \in \mathscr{F}_{s}$ for every $s>t$. Therefore, $A^{C} \in \mathscr{F}_{s}$ for every $s>t$ which means that $A^{C} \in \mathscr{G}_{t}$.
iii) Next, if $\left(A_{k}\right) \subset \mathscr{G}_{t}$, then $\left(A_{k}\right) \subset \mathscr{F}_{s}$ for every $s>t$. Therefore, $A=\bigcup A_{k} \in \mathscr{F}_{s}$ for every $s>t$ which means that $A \in \mathscr{G}_{t}$.

Let's still verify that $\mathscr{G}_{t} \subset \mathscr{G}_{u}$ for every $t<u$. If $A \in \mathscr{G}_{t}$, then as above $A \in \mathscr{F}_{s}$ for every $s>t$. Especially, $A \in \mathscr{F}_{u} \subset \mathscr{G}_{u}$.
12. Show that a random variable τ is a $\left(\mathscr{F}_{t^{+}}\right)$-stopping time if and only if for every $t>0$ it holds that $\{\tau<t\} \in \mathscr{F}_{t}$. (Hint. \Longrightarrow consider events $\{\tau \leq t-1 / k\}$ and \Longleftarrow consider events $\{\tau<t+1 / k\}$.) Suggestion.
\Longrightarrow If τ is $\left(\mathscr{F}_{t^{+}}\right)$-stopping time, then $\{\tau \leq s\} \in \mathscr{F}_{s^{+}}$for every s. Following the hint, let's take $s=t-\frac{1}{k}$. Then

$$
\left\{\tau \leq t-\frac{1}{k}\right\} \in \mathscr{F}_{s^{+}} \subset \mathscr{F}_{t}
$$

for every $k>0$. The second part $\mathscr{F}_{s^{+}} \subset \mathscr{F}_{t}$ follows, since $t>t-\frac{1}{k}=s$ and hence every $A \in \mathscr{F}_{s^{+}}$must belong to \mathscr{F}_{t} as well. Moreover,

$$
\{\tau<t\}=\bigcup_{k}\left\{\tau \leq t-\frac{1}{k}\right\}
$$

so we have deduced that $\{\tau<t\} \in \mathscr{F}_{t}$ as claimed.
\Longleftarrow Suppose now that $\{\tau<s\} \in \mathscr{F}_{s}$ for every $s>0$. Following the hint, take $s_{k}=t+\frac{1}{k}$. This implies that

$$
B_{k}:=\left\{\tau<t+\frac{1}{k}\right\} \in \mathscr{F}_{s_{k}} .
$$

Now

$$
B:=\{\tau \leq t\}=\bigcap_{k=1}^{\infty}\left\{\tau<t+\frac{1}{k}\right\}=\bigcap_{k=1}^{\infty} B_{k},
$$

so we need to show that $B \in \mathscr{F}_{t^{+}}$. Since $\left\{\tau<t+\frac{1}{k+1}\right\} \subset\left\{\tau<t+\frac{1}{k}\right\}$, we see that $\left(B_{k}\right)$ is decreasing sequence of events. This implies that

$$
B=\bigcap_{k=1}^{\infty} B_{k}=\bigcap_{k=M}^{\infty} B_{k}
$$

for every $M \geq 1$, since the clearly the left-hand side is a subset of the righthand side, but if $\omega \in B_{k}$ for every $k \geq M$, then it also belongs to $\omega \in B_{M} \subset$ $B_{M-1} \subset \cdots \subset B_{1}$.

So let's assume that $k \geq M$. Then $s_{k}=t+\frac{1}{k} \leq t+\frac{1}{M}=s_{M}$, and so $B_{k} \in \mathscr{F}_{s_{k}} \subset \mathscr{F}_{s_{M}}$. This implies that

$$
B=\bigcap_{k=M}^{\infty} B_{k} \in \mathscr{F}_{s_{M}}
$$

for every $M \geq 1$. If $s>t$, then we can find $M \geq 1$ so that $s>s_{M}>t$ and so, $B \in \mathscr{F}_{s}$ as well. But this means that

$$
B \in \mathscr{F}_{s}
$$

for every $s>t$ or in other words $B=\{\tau \leq t\} \in \mathscr{F}_{t^{+}}$. This proves the claim.

