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Stochastic processes on domains

Suggestions to excercise problem sheet 2

Note. In the Problems 1-10 the j,k and n are always integers.

1. Let (Pt,x) be as in Lemma 3.14 in Lecture notes (page 23). Let

µx(t1,...,tn)(A1 × · · · × An) =
ˆ
A1

Pt1,x( dx1) . . .
ˆ
An

Ptn−tn−1,xn−1( dxn)

for every x ∈ S, for every n ∈ N+, for every t1 < · · · < tn and for every A1, . . . , An ∈
S . Let (An) ⊂ S be a sequence of sets in S . Define Bk,j, Ck,j ∈ S as [Bk,j ] =
[Ak ][ k 6= j ] + [S ][ k = j ]. and [Ck,j ] = [Ak ][ k < j ] + [Ak−1 ][ k > j ]. Let

πj,n(t1, . . . , tn) = (s1, . . . , sn−1) where sk = tk[ k < j ] + tk−1[ k > j ]. Show that the

measures µx(t1,...,tn) are consistent, i.e.

i) show that

µx(t1,...,tn)(B1,j × · · · ×Bn,j) = µxπj,n(t1,...,tn)(C1,j × · · · × Cn−1,j)

for every n ∈ N, for every 1 ≤ j ≤ n.

Suggestion. There is an unfortunate misprint sk should be sk = tk[ k < j ]+tk+1[ k ≥
j ] and similarly Ck,j should have [Ak+1 ][ k ≥ j ]. Furthermore, the n should be at

least 2 for this to be meaningful.

Therefore, this problem is considered to solved by everyone.

With this change let’s look for different values of n. First is n = 2. Then we have

two equations

µx(t1,t2)(A1 × S) = µx(t1)(A1).

and

µx(t1,t2)(S × A2) = µx(t2)(A2).

Therefore, by definition these reduce to equations

ˆ
A1

Pt2−t1,x1(S)Pt1,x( dx1) = Pt1,x(A1)



and ˆ
S

Pt2−t1,x1(A2)Pt1,x( dx1) = Pt2,x(A2).

The first one follows since Pt,x is a probability measure for every t and x and hence

Pt2−t1,x1(S) = 1 and thus

ˆ
A1

Pt2−t1,x1(S)Pt1,x( dx1) =
ˆ
A1

Pt1,x( dx1) = Pt1,x(A1).

The second one is the Chapman–Kolmogorov equation (since t2 − t1 + t1 = t2) so it

holds as well. Let’s suppose that the claim holds for all n (say less than N) and let’s

consider the case n + 1. So we have n + 1 equations to show. Suppose k = n + 1
first. Then

µ
(x)
(t1,t2,...,tn+1)(A1 × A2 × · · · × S) =

ˆ
A1

. . .

ˆ
An

Pt1,x( dx1) . . . Pt′n,xn−1(An)Pt′n+1,xn(S)

= µ
(x)
(t1,...,tn)(A1 × · · · × An)

as in the case when n = 2. Next suppose 1 < k ≤ n. Since the equation is then of

form ˆ
A1

. . .

ˆ
Ak−1

Pt′
k−1

( dxk−1)f(xk−1) =
ˆ
A1

. . .

ˆ
Ak−1

Pt′
k−1

( dxk−1)g(xk−1)

it is enough to show that f = g. Now we notice that

f(xk−1) = µ
(xk−1)
(t′

k
,vk+1,t

′
k+2,...,t

′
n+1)(S × Ak+1 × · · · × An+1)

and

g(xk−1) = µ
(xk−1)
(vk+1,t

′
k+2,...,t

′
n+1)(Ak+1 × · · · × An+1)

where vk+1 = tk+1 − tk−1. Since now there are at most n+ 1− 1 times and sets left,

we get that f = g by induction assumption.

So we are left with the equation for k = 1. This time we notice that the equation

is of form ˆ
S

Pt1,x( dx1)
ˆ
A2

Pt′2,x( dx2)f(x2) =
ˆ
A2

Pt2,x( dx2)f(x2)

Notice that if f would be a constant function, this would be the Chapman–Kolmogorov

equation. Now Chapman–Kolmogorov equation implies for simple functions f that
ˆ
S

Pt1,x( dx1)
ˆ
A2

Pt′2,x( dx2)f(x2) =
ˆ
A2

Pt2,x( dx2)f(x2)



holds. And from this the claim follows by the monotone convergence.

2. Show that the transition probability operator of Brownian motion P
(B)
t (see pages

21–22) satisfies

lim
t→0

P
(B)
t f(x) = f(x)

for every x ∈ Rd and every bounded and continuous f . (Hint: change of variables so

that t appears only in the argument of f and dominated convergence).

Suggestion. By definition

P
(B)
t f(x) = (2πt)−d/2

ˆ
Rd

f(y)e−
1
2 |x−y|

2/t dy.

By change of variable z = (y − x)/
√
t we see that f(y) = f(x+ z

√
t), the exponent

|x− y|2/t = |z|2 and the dz = t−d/2 dy. So

P
(B)
t f(x) = (2π)−d/2

ˆ
Rd

f(x+ z
√
t)e−

1
2 |z|

2 dz.

Since f is bounded, and e−
1
2 |z|

2
is integrable, we have by dominated convergence that

lim
t→0

P
(B)
t f(x) = (2π)−d/2

ˆ
Rd

lim
t→0

f(x+ z
√
t)e−

1
2 |z|

2 dz

= f(x)(2π)−d/2
ˆ
Rd

e−
1
2 |z|

2 dz.

Now the integral on the right is the Gaussian integral and so the right-hand side is

1 and the claim follows.

3. Show that the transition probability operator of Brownian motion P
(B)
t (see 2.

above) satisfies

lim
t→0
‖P (B)

t f − f ‖ = lim
t→0

sup
x∈Rd

|P (B)
t f(x)− f(x)| = 0

for every x ∈ Rd and every f ∈ C∞(Rd). (Hint: show that there is large R such that

outside ball of radius R the difference is small and 2.)

Suggestion. Let ε > 0. Choose R0 > 0 so that |f(x)| < ε for every |x| > R0. So

let’s take any point x, such that |x| > R > R0 and let’s divide the integration in to

two parts

|P (B)
t f(x)| ≤ (2πt)−d/2

ˆ
|y|≤r

dy · · ·+ (2πt)−d/2
ˆ
|y|>r

dy . . .



Since f is bounded, say |f(y)| ≤ M for every y ∈ Rd, we can estimate the first one

by using polar coordinates to be at most

M(2πt)−d/2
ˆ r

0
e−(λ−|x|)2/2λd−1 dλ.

If r < R/2, say, then |λ− |x|| = |x| − λ > R/2 and hence −(λ− |x|)2 ≤ −R2/4. So

we may estimate the first integral by

M ′e−R
2/32rd ≤M ′′e−R

2/8Rd

Now the second integral is easy to estimate, if we assume that r > R0, since then

|f(y)| < ε for every |y| > r and the remainding part is just the Gaussian integral.

So if we can choose r < R/2 and r > R0, then

|P (B)
t f(x)| . ε+ e−R

2/8Rd.

This means that the estimate can be done provided that R0 < r < R/2 which means

that the estimate holds whenever R > 2R0. Moreover, we can make this estimate

smaller than 2ε for large enough R. Let’s call such an R as R1.

Now for R1 we have

|P (B)
t f(x)− f(x)| ≤ 2ε+ |f(x)| ≤ 3ε

for every |x| > R1. Since the set |x| ≤ R1 is bounded and closed, i.e. compact, we

know that the pointwise convergence implies uniform convergence so that

lim
t→0

sup
|x|≤R1

|P (B)
t f(x)− f(x)| = 0

if

lim
t→0
|P (B)
t f(x)− f(x)| = 0

for every |x| ≤ R1. But this we know from the Problem 2. Therefore, if we choose

t0 > 0 small enough, we have that

sup
|x|≤R1

|P (B)
t f(x)− f(x)| ≤ 3ε

for every t < t0 and so

sup
x∈Rd

|P (B)
t f(x)− f(x)| ≤ 3ε

for every t < t0. This implies the claim.



Some theory. Suppose (Xt) is a Markov process and suppose there exists a shift

operators θs : Ω → Ω for every s > 0 with the property Xt ◦ θs(ω) = Xt(θs(ω)) :=
Xt+s(ω) for every t ≥ 0 and for every ω ∈ Ω. This way we can easily express that

general idea of forgetting the past and the restarting the clock.

Note. In Problems 4, 5, 6 and 7 the triplet (Xt,Ft, {Px}) is a Markov process. The

algebra A∞ and the σ-algebre F∞ are defined in the proof of Lemma 3.14 on page

24. The Dynkin system is defined in the proof of Lemma 3.14 on page 25.

4. Let s < t1 < · · · < tn. Show that the time stationary Markov property for (Xt)
with respect to (Ft) implies that

Ex(f1(Xt1) . . . fn(Xtn) |Fs) = EXs (f1(Xt1−s) . . . fn(Xtn−s))

for every x ∈ S and for every fj bounded and measurable function with j = 1, . . . , n.

You can assume that this is know for n = 1.

Suggestion. When n = 1 this claim states that

Ex(f1(Xt1) |Fs) = EXs f1(Xt1−s)

This is the Markov property in the integrated form since suppose f1 is a simple

function a1[B1 ] + · · ·+ an[Bn ]. Then

Ex(f1(Xt1) |Fs) =
∑
k

akEx([Xt1 ∈ Bk ] |Fs) =
∑
k

akEXs [Xt1−s ∈ Bk ]

= EXs f1(Xt1−s)

Therefore, by the usual procedure we can use monotone convergence to show this for

every bounded and measurable function f1. But this part was something you could

assume to be known.

Assume that the claim holds for N ≤ n and let’s consider the case N = n +
1. Since f1(Xt1) is Ft1-measurables, we have by the property of the conditional

expectation that

Ex(f1(Xt1) . . . fn(Xtn) |Fs) = Ex(f1(Xt1)Ex(f2(Xt2) . . . fn(Xtn) |Ft1) |Fs) .

If you don’t remember this I’ll verify this in the end. But now we may use the

induction assumption and we have that

Ex(f2(Xt2) . . . fn(Xtn) |Ft1) = EXt1
f2(Xt2−t1) . . . fn(Xtn−t1) = g(Xt1).



for every x. So we have obtained that

Ex(f1(Xt1) . . . fn(Xtn) |Fs) = Ex(f1(Xt1)g(Xt1) |Fs) = EXs f1(Xt1−s)g(Xt1−s)

where the last identity was shown first (or assumed to be known). Now recall

g(x) = Ex f2(Xt2−t1) . . . fn(Xtn−t1)

and so again by the induction assumption

g(Xt1−s) = EXt1−s f2(Xt2−t1) . . . fn(Xtn−t1) = Ex(f2(Xt2−s) . . . fn(Xtn−s) |Ft1−s)

for every x. Especially,

Ex(f1(Xt1) . . . fn(Xtn) |Fs) = EXs f1(Xt1−s)EXs(f2(Xt2−s) . . . fn(Xtn−s) |Ft1−s)
= EXs f1(Xt1−s)f2(Xt2−s) . . . fn(Xtn−s)

where the latter identity follows again from the fact that f1(Xt1−s) is Ft1−s-measurable

by the same property of conditional expectation we used once already.

We were using two properties of conditional expectation. One is E (XY |G ) =
XE (Y |G ) when X is G -measurable and the integration makes sense. This was

one of the Problems in the Excercise Sheet 1. And the second is E (X |G ) =
E (E (X |H ) |G ) for every sub-σ-algebra G ⊂H . This follows since this is equiv-

alent with

E [A ]X = E [A ]E (X |H )

for every A ∈ G . When A ∈ G ⊂H , we see that this holds by the definition of the

conditional expectation with respect to H .

5. Let 0 < t1 < · · · < tn and let A = {Xt1 ∈ A1, . . . , Xtn ∈ An} ∈ A∞. Show that

the time stationary Markov property for (Xt) with respect to (Ft) implies that

Ex([A ] ◦ θs |Fs) = EXs [A ] (0.1)

for every x ∈ S. (Hint: try writing [A ] ◦ θs as a form of Problem 4. from the above

definition of the shift operator)

Suggestion. Note that

[A ](ω) = [Xt1(ω) ∈ A1, . . . Xtn(ω) ∈ An ]



and that

[A ] ◦ θs(ω) = [Xt1(θs(ω)) ∈ A1, . . . Xtn(θs(ω)) ∈ An ]
= [Xt1+s(ω) ∈ A1, . . . Xtn+s(ω) ∈ An ]

This means that the claim is equivalent with

Px (Xt1+s ∈ A1, . . . Xtn+s ∈ An |Fs ) = PXs (Xt1 ∈ A1, . . . Xtn ∈ An )

If we denote t′j = tj + s and denote fj = [Aj ] the claim becomes

Ex

(
f1(Xt′1

) . . . fn(Xt′n) |Fs

)
= EXs (f1(Xt′1−s) . . . fn(Xt′n−s))

which holds by Problem 4.

6. Let G be the family of sets

G = { A ∈ F∞ : A satifies the identity (0.1) }

Show that G is a Dynkin system and that it coincides with F∞. (Hint: see proof of

Lemma 3.14).

Suggestion. We need to verify that

i) Ω ∈ G ,

ii) AC ∈ G , if A ∈ G ,

ii) ⋃k Ak ∈ G , if ∀ : Ak ∈ G and Ak ∩ Aj = ∅ for j 6= k.

The first one follows, since Ω ∈ A∞ and we proved that in Problem 5. The second

claim is that

Ex

(
[AC ] ◦ θs |Fs

)
= EXs [AC ] .

if A ∈ G . Since [AC ] = 1− [A ] the claim becomes

1− Ex([A ] ◦ θs |Fs) = 1− EXs [A ]

which is equivalent with A ∈ G .

The third case is similar, since for disjoint sequence of sets

[
⋃
k

Ak ] =
∑
k

[Ak ]



so the claim of iii) becomes

∑
k

Ex([Ak ] ◦ θs |Fs) =
∑
k

EXs [Ak ]

when (Ak) ⊂ G is sequence of disjoint sets. Since Ak ∈ G means that

Ex([Ak ] ◦ θs |Fs) = EXs [Ak ]

the claim follows. Therefore, G is a Dynkin system. By the proof of Lemma 3.14.

we know that σ(A∞) = F∞ and by Dynkin’s π-λ Theorem, G ⊃ σ(A∞) = F∞. But

since G ⊂ F∞, we have that G = F∞ and the claim follows.

7. Let Z be a F∞-measurable bounded random variable. Show that the time sta-

tionary Markov property for (Xt) with respect to (Ft) implies that

Ex(Z ◦ θs |Fs) = EXs Z

for every s ≥ 0. (Hint: first simple Z, then the general case).

Suggestion. When Z = a1[A1 ] + . . . an[An ] for Aj ∈ F∞, we know by Problem 6.

that Aj ∈ G and therefore,

Ex([Ak ] ◦ θs |Fs) = EXs [Ak ]

This implies that

Ex(Z ◦ θs |Fs) =
∑
k

akEx([Ak ] ◦ θs |Fs) =
∑
k

akEXs [Ak ] = EXs Z

The general case follows by monotone convergence.

8. Suppose Z is an integrable real valued random variable and (Ft) is a filtration.

Show that a process (Xt) which is defined as

Xt := E (Z |Ft)

is a martingale with respect to the filtration (Ft).
Suggestion. We first need to check that X is adapted, E | |Xt <∞ for every t and

then the martingale property.

Since Xt is conditional expectation with respect to the filtration (Ft), it is by the

definition of conditional expectation measurable Ft-measurable. Thus, X is adapted.



Next, since Z is integrable, we can write |E (Z |Ft) | ≤ E (|Z| |Ft) and there-

fore,

E |Xt| ≤ E E (|Z| |Ft) = E |Z| <∞,

and hence Xt is integrable for every t as well.

The martingale property follows from the property we have used couple of times

(see Problem 4.). By definition of Xt we have

E (Xt |Fs) = E (E (Z |Ft) |Fs) .

Now since Fs ⊂ Ft, we have that

E (E (Z |Ft) |Fs) = E (Z |Fs) = Xs

and the claim follows. This is a very important class of martingales, actually by

Theorem 5.3. every uniformly integrable martingale is of this type and we see from

this Problem that we can find a lot of martingales given a filtration.

9. Let τ1 and τ2 be (Ft)-stopping times. Show that

τ1 ∧ τ2, τ1 ∨ τ2, and τ1 + τ2

are (Ft)-stopping times. (Hint: try to express the conditions as unions and intersec-

tions of conditions involving only τ1 and τ2. Also discrete time versions are fine.)

Suggestion.

We will show first that {τ1 ∧ τ2 ≤ t} ∈ Ft. If τ1 ∧ τ2 ≤ t, then either τ1 ≤ t or

τ2 ≤ t (or both). Moreover, if τ1 ≤ t or τ2 ≤ t, then the minimum is also ≤ t, so

{τ1 ∧ τ2 ≤ t} = {τ1 ≤ t} ∪ {τ2 ≤ t} ∈ Ft

since τ1 and τ2 are stopping times and therefore both of the events on the right-hand

side and thus also their union is in Ft.

We will show first that {τ1 ∨ τ2 ≤ t} ∈ Ft. If τ1 ∨ τ2 ≤ t, then both τ1 ≤ t and

τ2 ≤ t. Moreover, if both τ1 ≤ t and τ2 ≤ t, then the maximum is also ≤ t, so

{τ1 ∨ τ2 ≤ t} = {τ1 ≤ t} ∩ {τ2 ≤ t} ∈ Ft

since τ1 and τ2 are stopping times and therefore both of the events on the right-hand

side and thus also their union is in Ft.



Let’s do the discrete time version first and then the general case.

Now τ1 ∈ {t1, . . . , tn} and τ2 ∈ {s1, . . . , sm} for some 0 ≤ t1 < · · · < tn and

0 ≤ s1 < · · · < sm.

Now τ1 + τ2 ∈ { tj + sk : j, k } and τ1 + τ2 ≤ t, when ever τ1 = tj and τ2 = sk

satisfy the extra conditions 0 ≤ tj ≤ t following 0 ≤ sk ≤ t− tj. So

{τ1 + τ2 ≤ t} =
⋃
tj≤t

⋃
sk≤t−tj

{τ1 = tj, τ2 = sk}

For every fixed tj ≤ t and sk ≤ t − tj the event on the right is in Fu ⊂ Ft, where

u = tj∨sk ≤ t. So everything on the right is in Ft so the claim follows in the discrete

case for simple stopping times.

We need to reformulate the right-hand side for the general case since we cannot

expect to have equalities, since only inequalities generalise. First we take the union

over sk for fixed tj and we notice that

{τ1 + τ2 ≤ t} =
⋃
tj≤t
{τ1 = tj, τ2 ≤ t− tj}

So now τ2 is fine. Next we notice that if τ2 ≤ t − tj, then any τ1 = tl for tl ≤ tj

must actually appear on the right, since τ2 + τ1 ≤ t − tj + tl < t. So we can write

the above as

{τ1 + τ2 ≤ t} =
⋃
tj≤t
{τ1 ≤ tj, τ2 ≤ t− tj}

This is a good formulation for generalization and first we good try

{τ1 + τ2 ≤ t} =
⋃
s≤t
{τ1 ≤ s, τ2 ≤ t− s}

We notice that both sides are equal and for every fixed s ≤ t the event on the right-

hand side is in Ft, but there is one issue left and that’s the uncountability of the

union.

But, fortunately, this is almost easy to fix, namely by restricting s ∈ Q. Then

{τ1 + τ2 ≤ t} =
⋃

s<t,s∈Q
{τ1 ≤ s, τ2 ≤ t− s} ∪ {τ1 = t, τ2 = 0}

holds as well, since now the right-hand side is by previous a subset of {τ1 + τ2 ≤ t},
but if τ1(ω) + τ2(ω) ≤ t, then either τ1(ω) = t or τ1(ω) < t. The former case is the

special case on the right and in the latter case we can find a rational s such that

τ1(ω) ≤ s < t and τ2(ω) + s < t.



Why ? Well the first condition says that s ∈ [τ1(ω), t) and the latter says that

s ∈ (−∞, t− τ2(ω)). These intervals intersect if and only if t− τ2(ω) > τ1(ω) which

is equivalent with τ1(ω) + τ2(ω) < t.

Therefore, we have

{τ1 + τ2 ≤ t} =
⋃

s<t,s∈Q
{τ1 ≤ s, τ2 ≤ t− s} ∪ {τ1 = t, τ2 = 0}

and the right-hand side is a countable union of events in Ft.

10. Show that the Fτ is a σ-algebra, when τ is a (Ft)-stopping time.

Suggestion. Now by definition Fτ = { A : ∀t ≥ 0: A ∩ {τ ≤ t} ∈ Ft }. We prove

this by verifyng that Fτ satisfies the axioms of the σ-algebra.

i) Ω ∈ Fτ , since Ω ∩ {τ ≤ t} = {τ ≤ t} and this is in Ft since τ is a proper

stopping time.

ii) Suppose A ∈ Fτ . Then

{AC , τ ≤ t} = {τ ≤ t} \ {A, τ ≤ t} = {Ω, τ ≤ t} ∩ {A, τ ≤ t}C .

Now the events on the right-hand side are in Ft since Ω, A ∈ Fτ so we deduce

that AC ∈ Fτ .

iii) Suppose (Ak) ⊂ Fτ . Since

{τ ≤ t} ∩
⋃
k

Ak =
⋃
k

{Ak, τ ≤ t}

and by assumption everything on the right is in Ft we have that
⋃
Ak ∈ Fτ

as well.

11. Let (Ft) be a filtration. Show that the (Ft+) is right-continuous filtration.

Suggestion. To show that (Gt) = (Ft+) is right-continuous filtration, we need to

show that ⋂
s>t

Gs = Gt.

Clearly, Gt ⊂
⋂

Gs if we know that (Gt) is a filtration. So let’s suppose A ∈ ⋂Gs.

By definition, A ∈ Fs+ for every s > t. Which by definition means that A ∈ Fu

for every u > s and every s > t. But this implies that A ∈ Fu for every u > t and



therefore, A ∈ Ft+ = Gt. So, at least if we know that (Gt) is a filtration, then it is

right-continuous.

For completeness, let’s show that Gt is a σ-algebra.

i) The Ω ∈ Gt is quite easy to verify, since Ω ∈ Fs for every s, and therefore, also

in every Fs for s > t.

ii) Next, if A ∈ Gt, then A ∈ Fs for every s > t. Therefore, AC ∈ Fs for every

s > t which means that AC ∈ Gt.

iii) Next, if (Ak) ⊂ Gt, then (Ak) ⊂ Fs for every s > t. Therefore, A = ⋃
Ak ∈ Fs

for every s > t which means that A ∈ Gt.

Let’s still verify that Gt ⊂ Gu for every t < u. If A ∈ Gt, then as above A ∈ Fs

for every s > t. Especially, A ∈ Fu ⊂ Gu.

12. Show that a random variable τ is a (Ft+)-stopping time if and only if for every

t > 0 it holds that {τ < t} ∈ Ft. (Hint. =⇒ consider events {τ ≤ t− 1/k} and ⇐=
consider events {τ < t+ 1/k}.) Suggestion.

=⇒ If τ is (Ft+)-stopping time, then {τ ≤ s} ∈ Fs+ for every s. Following the

hint, let’s take s = t− 1
k
. Then

{τ ≤ t− 1
k
} ∈ Fs+ ⊂ Ft

for every k > 0. The second part Fs+ ⊂ Ft follows, since t > t − 1
k

= s and

hence every A ∈ Fs+ must belong to Ft as well. Moreover,

{τ < t} =
⋃
k

{τ ≤ t− 1
k
}

so we have deduced that {τ < t} ∈ Ft as claimed.

⇐= Suppose now that {τ < s} ∈ Fs for every s > 0. Following the hint, take

sk = t+ 1
k
. This implies that

Bk := {τ < t+ 1
k
} ∈ Fsk

.

Now

B := {τ ≤ t} =
∞⋂
k=1
{τ < t+ 1

k
} =

∞⋂
k=1

Bk,



so we need to show that B ∈ Ft+ . Since {τ < t + 1
k+1} ⊂ {τ < t + 1

k
}, we see

that (Bk) is decreasing sequence of events. This implies that

B =
∞⋂
k=1

Bk =
∞⋂

k=M
Bk

for every M ≥ 1, since the clearly the left-hand side is a subset of the right-

hand side, but if ω ∈ Bk for every k ≥ M , then it also belongs to ω ∈ BM ⊂
BM−1 ⊂ · · · ⊂ B1.

So let’s assume that k ≥ M . Then sk = t + 1
k
≤ t + 1

M
= sM , and so

Bk ∈ Fsk
⊂ FsM

. This implies that

B =
∞⋂

k=M
Bk ∈ FsM

for every M ≥ 1. If s > t, then we can find M ≥ 1 so that s > sM > t and so,

B ∈ Fs as well. But this means that

B ∈ Fs

for every s > t or in other words B = {τ ≤ t} ∈ Ft+ . This proves the claim.


