Department of Mathematics and Statistics

Stochastic processes on domains
Suggestions to excercise problem sheet 1

1. Let $\Omega=[0,1)$ be the unit interval and denote $I_{j}=\left[j 2^{-n},(j+1) 2^{-n}\right)$ for $j \in \mathbb{Z}$ and $n \in \mathbb{N}_{+}$. Show that the finite family $\mathscr{G}_{n}:=\left\{I_{j_{1}} \cup \ldots I_{j_{m}}: 0 \leq j_{1}<\ldots j_{m}<2^{n}\right\}$ is a σ-algebra on Ω.
Suggestion. We need to check that \mathscr{G}_{n} contains Ω, but since $\Omega=I_{0} \cup \cdots \cup I_{2^{n}-1}$ it is in \mathscr{G}_{n}.

Next if $A \in \mathscr{G}_{n}$, then $A=I_{j_{1}} \cup \cdots \cup I_{j_{k}}$ for some $0 \leq j_{1}<\ldots j_{k} \leq 2^{n-1}$. Now $\left\{0, \ldots, 2^{n}-1\right\} \backslash\left\{j_{1}, \ldots, j_{k}\right\}=\left\{i_{1}, \ldots, i_{2^{n}-1-k}\right\}$ and therefore, $A^{C}=I_{i_{1}} \cup \cdots \cup$ $I_{I_{2^{n}-1-k}} \in \mathscr{G}_{n}$.

Now since \mathscr{G}_{n} is finite, we only need to check that the finite unions are in \mathscr{G}_{n} since $\left\{A_{1}, \ldots, A_{j}, \ldots\right\}=\left\{B_{1}, \ldots, B_{M}\right\}$ for some $B_{j} \in \mathscr{G}_{n}$. Let $A=B_{1} \cup \cdots \cup B_{M}$ where

$$
B_{j}=\bigcup_{k=1}^{m_{j}} I_{l_{k, j}}
$$

for $0 \leq l_{1, j}<\ldots l_{m_{j}, j}<2^{n}$. Then

$$
A=\bigcup_{j=1}^{M} B_{j}=\bigcup_{j=1}^{M} \bigcup_{k=1}^{m_{j}} I_{l_{k, j}} \in \mathscr{G}_{n} .
$$

2. Let $\Omega=[0,1)$ and \mathscr{G}_{n} as in 1 . Let $\mathscr{F}=\mathscr{B}[0,1), \mathbf{P}$ be the Lebesgue measure on (Ω, \mathscr{F}) and $\xi: \Omega \rightarrow \mathbb{R}_{+}$be a Borel measurable. Show from the definition of conditional expectation that

$$
\mathbf{E}\left(\xi \mid \mathscr{G}_{n}\right)(\omega)=\sum_{j=0}^{2^{n}-1}\left[\omega \in I_{j}\right] 2^{n} \int_{I_{j}} \xi\left(\omega^{\prime}\right) \mathrm{d} \omega^{\prime}
$$

Suggestion. First we note that the random variable

$$
Z=\sum_{j=0}^{2^{n}-1} 2^{n} c_{j}\left[I_{j}\right]
$$

where $c_{j}=\mathbf{E} \xi\left[I_{j}\right]$ on the right-hand side is integrable since it is bounded. Then we note that it is \mathscr{G}_{n}-measurable, since it takes finitely many values $\left\{2^{n} c_{0}, \ldots, 2^{n} c_{2^{n}-1}\right\}$ and moreover,

$$
\left\{Z=2^{n} c_{j}\right\}=I_{j} \in \mathscr{G}_{n} .
$$

We still need to verify that

$$
\mathbf{E}[A] \xi=\mathbf{E}[A] Z
$$

Since every $A \in \mathscr{G}_{n}$ is of form $I_{j_{1}} \cup \cdots \cup I_{j_{k}}$ it is enough to show

$$
\mathbf{E}\left[I_{j}\right] \xi=\mathbf{E}\left[I_{j}\right] Z \quad \forall j=0, \ldots, 2^{n}-1
$$

The left-hand side is

$$
\mathbf{E}\left[I_{j}\right] \xi=c_{j}
$$

and the right-hand side is

$$
\mathbf{E}\left[I_{j}\right] Z=\sum_{k=0}^{2^{n}-1} \mathbf{E}\left[I_{j} \cap I_{k}\right] 2^{n} c_{k}=2^{n} c_{j} \mathbf{E}\left[I_{j}\right]=2^{n} 2^{-n} c_{j}=c_{j} .
$$

Therefore, the right-hand side is equal to left-hand side for every j and the claim follows.
3. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a simple, measurable function

$$
f(x)=\sum_{k=1}^{n} a_{k}\left[x \in A_{k}\right] .
$$

Let Y be bounded and positive random variable, X a real-valued random variable and assume that X is \mathscr{G}-measurable for some sub- σ-algebra $\mathscr{G} \subset \mathscr{F}$. Show that the conditional expectation $f(X) Y$ with respect to \mathscr{G} is

$$
\mathbf{E}(f(X) Y \mid \mathscr{G})=f(X) \mathbf{E}(Y \mid \mathscr{G})
$$

almost surely.
Suggestion. Since $f(X)$ is bounded and Y is bounded, the product $f(X) Y$ is bounded and therefore integrable. Furthermore, since Y is bounded, it is integrable as well. So both $\mathbf{E}(f(X) Y \mid \mathscr{G})$ and $\mathbf{E}(Y \mid \mathscr{G})$ can be defined. Moreover, $f(X) \mathbf{E}(Y \mid \mathscr{G})$ is integrable and \mathscr{G}-measurable as a product of two \mathscr{G}-measurable functions, so the claim makes sense.

Next take any $A \in \mathscr{G}$. We want to show that

$$
\mathbf{E}([A] f(X) Y)=\mathbf{E}([A] f(X) \mathbf{E}(Y \mid \mathscr{G}))
$$

since then the claim follows. Since f is a simple function, this claim can be written as

$$
\sum_{k=1}^{n} a_{k} \mathbf{E}\left(\left[A, X \in A_{k}\right] Y\right)=\sum_{k=1}^{n} a_{k} \mathbf{E}\left(\left[A, X \in A_{k}\right] \mathbf{E}(Y \mid \mathscr{G})\right) .
$$

Now since X is \mathscr{G}-measurable, we know that $\left\{X \in A_{k}\right\} \in \mathscr{G}$ for every k, and therefore, $\left\{A, X \in A_{k}\right\} \in \mathscr{G}$ in every k. But the definition of the conditional expectation says that hence

$$
\mathbf{E}\left(\left[A, X \in A_{k}\right] \mathbf{E}(Y \mid \mathscr{G})\right)=\mathbf{E}\left(\left[A, X \in A_{k}\right] Y\right)
$$

for every k and the claim follows.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a bounded, positive and measurable function (but not necessarily simple) and otherwise assume the same as in 3 . Show that the claim of 3 . holds in this case as well by using monotone convergence theorem.
Suggestion. Since $f(X)$ is bounded and Y is bounded, the product $f(X) Y$ is bounded and therefore integrable. Furthermore, since Y is bounded, it is integrable as well. So both $\mathbf{E}(f(X) Y \mid \mathscr{G})$ and $\mathbf{E}(Y \mid \mathscr{G})$ can be defined. Moreover, $f(X) \mathbf{E}(Y \mid \mathscr{G})$ is integrable and \mathscr{G}-measurable as a product of two \mathscr{G}-measurable functions, so the claim makes sense.

Define for every $n>0$ a simple function f_{n} such that

$$
f_{n}(x):=\sum_{j=0}^{\infty} j 2^{-n}\left[f(x) \in I_{j, n}\right]
$$

where $I_{j, n}=\left[j 2^{-n},(j+1) 2^{-n}\right)$. Now $0 \leq f_{n}(x) \leq f(x)$ and 1 therefore, it is simple and measurable (since f is measurable and thus $\left\{x: f(x) \in I_{j, n}\right\}$ is measurable).

Moreover, $f_{n}(x) \leq f_{n+1}(x)$ since $f_{n}(x)\left[f(x) \in I_{j, n}\right]=j 2^{-n}$ and

$$
\begin{aligned}
f_{n+1}(x)\left[f(x) \in I_{j, n}\right] & =f_{n+1}(x)\left(\left[f(x) \in I_{2 j, n+1}\right]+\left[f(x) \in I_{2 j+1, n+1}\right]\right) \\
& \left.=2 j 2^{-n-1}\left[f(x) \in I_{2 j, n+1}\right]+(2 j+1) 2^{-n-1}\left[f(x) \in I_{2 j+1, n+1}\right]\right) \\
& \geq j 2^{-n}\left[f(x) \in I_{j, n}\right]
\end{aligned}
$$

[^0]So the sequence $\left(f_{n}\right)$ is monotonically increasing. Also $f(x)-f_{n}(x) \leq 2^{-n}$ so $f=$ $\lim _{n \rightarrow \infty} f_{n}$. Therefore, the monotone convergence theorem says that for every $A \in \mathscr{G}$

$$
\mathbf{E}([A] f(X) Y)=\lim _{n \rightarrow \infty} \mathbf{E}\left([A] f_{n}(X) Y\right)
$$

By problem 3. we know that

$$
\mathbf{E}\left([A] f_{n}(X) Y\right)=\mathbf{E}\left([A] f_{n}(X) \mathbf{E}(Y \mid \mathscr{G})\right)
$$

Now the monotone convergence theorem says (again) that

$$
\mathbf{E}([A] f(X) \mathbf{E}(Y \mid \mathscr{G}))=\lim _{n \rightarrow \infty} \mathbf{E}\left([A] f_{n}(X) \mathbf{E}(Y \mid \mathscr{G})\right)
$$

Thus, we have shown that

$$
\mathbf{E}([A] f(X) \mathbf{E}(Y \mid \mathscr{G}))=\mathbf{E}([A] f(X) Y)
$$

for every $A \in \mathscr{G}$ and we are done.

A random variable $X=\left(X_{1}, \ldots, X_{d}\right)$ is a d-dimensional Gaussian random variable with zero mean, if its characteristic function $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is

$$
\varphi_{X}(\lambda):=\mathbf{E} \exp (i\langle\lambda, X\rangle)=\exp \left(-\frac{1}{2}\langle\lambda, \Sigma \lambda\rangle\right)
$$

for some positive definite symmetric matrix $\Sigma=\left(\mathbf{E} X_{i} X_{j}\right)_{i j} \in \mathbb{R}^{d \times d}$. Here $\langle x, y\rangle=$ $x_{1} y_{1}+\ldots x_{d} y_{d}$. A d-dimensional Gaussian random X variable with zero mean has a density function if the covariance matrix Σ (the matrix in 5.) is invertible. Then the density function is

$$
q(x)=(2 \pi)^{-d / 2}|\Sigma|^{-1 / 2} \exp \left(-\frac{1}{2}\left\langle x, \Sigma^{-1} x\right)\right\rangle
$$

where $|\Sigma|$ is the determinant of the matrix Σ. If $\left(X_{1}, X_{2}, \ldots, X_{d}\right)$ is a d-dimensional Gaussian random variable and $\mathbf{E} X_{1} X_{j}=0$ for all $j \neq 1$, then X_{1} is independent from $\left(X_{2}, \ldots, X_{d}\right)$.
5. Show the Lemma 2.2 (i) from Lecture notes (page 14).

Suggestion. We want to show that $X(t)=B(t+h)-B(h)$ is a Brownian motion. First let's check the expectation:

$$
\mathbf{E} X(t)=\mathbf{E} B(t+h)-\mathbf{E} B(h)=0-0=0 .
$$

Next let's compute the covariance. Let's assume that $0 \geq t<s$ and so $\min (t+h, s+$ $h)=t+h$ and $\min (h, s+h)=\min (h, t+h)=h$ and $\min (h, h)=h$. Now

$$
\begin{aligned}
\mathbf{E} X(t) X(s) & =\mathbf{E}(B(t+h)-B(h))(B(s+h)-B(h)) \\
& =\mathbf{E} B(t+h) B(s+h)+\mathbf{E} B(h) B(h) \\
& -\mathbf{E} B(t+h) B(h)-\mathbf{E} B(h) B(s+h) \\
& =(t+h)+h-h-h=t
\end{aligned}
$$

so the covariance checks. We need to still show the Gaussianity, so let $\left\{t_{1}<\cdots<t_{n}\right\}$ be time instances. We need to show that $Z=\left(X\left(t_{1}\right), \ldots, X\left(t_{n}\right)\right)$ is a Gaussian random variable so let's compute its characteristic function

$$
\varphi_{Z}(\lambda)=\mathbf{E} \exp (i\langle\lambda, Z\rangle)=\mathbf{E} \exp \left(i \sum_{j=1}^{n} \lambda_{j}\left(B\left(t_{j}+h\right)-B(h)\right)\right) .
$$

Let's denote $Y=\left(B\left(t_{1}+h\right), \ldots, B\left(t_{n}+h\right), B(h)\right)$. This is Gaussian, since B is Brownian motion. If $\mu=\left(\lambda_{1}, \ldots, \lambda_{n},-\sum_{j=1}^{n} \lambda_{j}\right)$, then we know that

$$
\varphi_{Y}(\mu)=\exp \left(-\frac{1}{2}\left\langle\mu, \Sigma_{Y} \mu\right\rangle\right)
$$

but by construction $\varphi_{Z}(\lambda)=\varphi_{Y}(\mu)$. So we only have to show that $\left\langle\mu, \Sigma_{Y} \mu\right\rangle=$ $\left\langle\lambda, \Sigma_{Z} \lambda\right\rangle$. Let's denote $\Sigma_{Z}=A$ and $\Sigma_{Y}=C$.

By construction, $\mu_{j}=\lambda_{j}$ for every $j<n+1$ and $\mu_{n+1}=-\sum_{j=1}^{n} \lambda_{j}$. Moreover, by the previous computation

$$
A_{j, k}=\mathbf{E} X\left(t_{j}\right) X\left(t_{k}\right)=t_{j \wedge k}
$$

and when $j, k<n+1$ we have

$$
C_{j, k}=\mathbf{E} B\left(t_{j}+h\right) B\left(t_{k}+h\right)=t_{j \wedge k}+h=A_{j, k}+h
$$

In other cases $C_{j, k}=h$. Thus,

$$
\sum_{j, k=1}^{n+1} \mu_{j} \mu_{k} C_{j, k}=\sum_{j, k=1}^{n} \lambda_{j} \lambda_{k}\left(A_{j, k}+h\right)+2 \sum_{j=1}^{n} \lambda_{j} \mu_{n+1} h+\mu_{n+1}^{2} h
$$

This is tedious, but now notice that

$$
\mu_{n+1}^{2}=\sum_{j, k=1}^{n} \lambda_{j} \lambda_{k}
$$

and

$$
2 \sum_{j=1}^{n} \lambda_{j} \mu_{n+1}=-2 \sum_{j, k=1}^{n} \lambda_{j} \lambda_{k}=-2 \mu_{n+1}^{2}
$$

and therefore,

$$
\begin{aligned}
\sum_{j, k=1}^{n+1} \mu_{j} \mu_{k} C_{j, k} & =\sum_{j, k=1}^{n} \lambda_{j} \lambda_{k}\left(A_{j, k}+h\right)+\sum_{j, k=1}^{n} \lambda_{j} \lambda_{k} h-2 \mu_{n+1}^{2} h+\mu_{n+1}^{2} h \\
& =\sum_{j, k=1}^{n} \lambda_{j} \lambda_{k} A_{j, k}+\sum_{j, k=1}^{n} \lambda_{j} \lambda_{k} h-\mu_{n+1}^{2} h=\langle\lambda, A \lambda\rangle
\end{aligned}
$$

and the claim follows.
6. Show the Lemma 2.2 (ii) from Lecture notes (page 14).

Suggestion. We want to show that $\left\{B\left(t_{2}\right)-B\left(t_{1}\right), \ldots, B\left(t_{n}\right)-B\left(t_{n-1}\right)\right\}$ is an independent family of random variables where $t_{1}<\cdots<t_{n}$. Now that we know that this is Gaussian, we only need to show that $\mathbf{E}\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)\left(B\left(t_{k+1}\right)-B\left(t_{k}\right)\right)=0$ for $j \neq k$. But this is simple by assuming that $t_{j}<t_{j+1} \leq t_{k}<t_{k+1}$ which we can do by symmetry between j and k in the following computation, and so

$$
\begin{aligned}
\mathbf{E}\left(B\left(t_{j+1}\right)-B\left(t_{j}\right)\right)\left(B\left(t_{k+1}\right)-B\left(t_{k}\right)\right) & =\mathbf{E}\left(B\left(t_{j+1}\right) B\left(t_{k+1}\right)\right)+\mathbf{E}\left(B\left(t_{j}\right) B\left(t_{k}\right)\right) \\
& -\mathbf{E}\left(B\left(t_{j+1}\right) B\left(t_{k}\right)\right)-\mathbf{E}\left(B\left(t_{j}\right) B\left(t_{k+1}\right)\right) \\
& =t_{j+1}+t_{j}-t_{j+1}-t_{j}=0 .
\end{aligned}
$$

7. When $d=1$ and $X=B_{t}$, use integration by parts to show that

$$
\mathbf{E} B_{t}^{2 N}=t^{N}(2 N-1)!!:=t^{N}(2 N-1) \times(2 N-3) \times \ldots 3 \times 1
$$

for every $N \geq 1$.
Suggestion. Denote $I_{N}=\mathbf{E} B_{t}^{2 N}$. Then

$$
I_{N+1}=c_{t} \int_{\mathbb{R}} x^{2 N} x^{2} e^{-\frac{1}{2} x^{2} t^{-1}} \mathrm{~d} x=-c_{t} t \int_{\mathbb{R}} x^{2 N} x \partial_{x}\left(e^{-\frac{1}{2} x^{2} t^{-1}}\right) \mathrm{d} x
$$

Now since the exponential goes to zero faster than any polynomial we don't get any boundary terms from integration by parts and so

$$
I_{N+1}=c_{t} \int_{\mathbb{R}} x^{2 N} x^{2} e^{-\frac{1}{2} x^{2} t^{-1}} \mathrm{~d} x=c_{t} t \int_{\mathbb{R}} e^{-\frac{1}{2} x^{2} t^{-1}} \partial_{x} x^{2 N+1} \mathrm{~d} x=(2 N+1) t I_{N}
$$

This gives a recursive equation for I_{N}, which can be solved by

$$
I_{N}=I_{1} \prod_{j=1}^{N-1} \frac{I_{j+1}}{I_{j}}=I_{1} \prod_{j=1}^{N-1} t(2 j+1)=I_{1} t^{N-1}(2 N-1)!!
$$

But since $I_{1}=\mathbf{E} B_{t}^{2}=\min (t, t)=t$, the claim follows.
8. Using 7. show the Lemma 2.2 (iii) and (iv) from Lecture notes (page 14).

Suggestion. The (iii) is being done already, since we know that $B(t)-B(s) \sim$ $B(t-s)$, and so $\mathbf{E}(B(t)-B(s))^{2}=\mathbf{E} B(t-s)^{2}=(t-s)$. Furthermore, the

$$
\mathbf{E}(B(t)-B(s))^{2 N}=\mathbf{E}\left(B(t-s)^{2 N}\right)=(2 N-1)!!(t-s)^{N} \leq \gamma_{N}|t-s|^{N}
$$

by choosing $\gamma_{N}=(2 N-1)!!$.
9. A π-system on a set S is a family $\mathscr{I} \neq \emptyset$ of subsets of S such that $\forall A, B \in \mathscr{I}$: $A \cap B \in \mathscr{I}$. Show that the set $\mathscr{J}_{1}=\{(-\infty, x]: x \in \mathbb{R}\}$ is a π-system on \mathbb{R}.
Suggestion. Since $(-\infty, 0] \in \mathscr{J}_{1}$ we can be sure that $\mathscr{J}_{1} \neq \emptyset$.
Let $A, B \in \mathscr{J}_{1}$. Then there are real numbers $x, y \in \mathbb{R} \hat{\mathrm{~A}}$ such that $A=(-\infty, x]$ and $B=(-\infty, y]$. Since $A \cap B=(-\infty, \min (x, y)]$ and $\min (x, y) \in \mathbb{R}$, we have that $A \cap B \in \mathscr{J}_{1}$. Therefore, \mathscr{J}_{1} is a π-system.
10. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a simple, measurable function

$$
f(x)=\sum_{k=1}^{n} a_{k}\left[x \in A_{k}\right] .
$$

Show that the time stationary Markov property for $\left(X_{t}\right)$ with respect to $\left(\mathscr{F}_{t}\right)$ implies that

$$
\mathbf{E}_{x}\left(f\left(X_{t}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}} f\left(X_{t-s}\right)
$$

Suggestion. We have that

$$
\mathbf{E}_{x}\left(f\left(X_{t}\right) \mid \mathscr{F}_{s}\right)=\sum_{k=1}^{n} a_{k} \mathbf{E}_{x}\left(\left[X_{t} \in A_{k}\right] \mid \mathscr{F}_{s}\right)=\sum_{k=1}^{n} a_{k} \mathbf{P}_{x}\left(X_{t} \in A_{k} \mid \mathscr{F}_{s}\right) .
$$

Therefore, by the time stationary Markov property

$$
\mathbf{E}_{x}\left(f\left(X_{t}\right) \mid \mathscr{F}_{s}\right)=\sum_{k=1}^{n} a_{k} \mathbf{P}_{X_{s}}\left(X_{t-s} \in A_{k}\right)=\sum_{k=1}^{n} a_{k} \mathbf{E}_{X_{s}}\left[X_{t-s} \in A_{k}\right]=\mathbf{E}_{X_{s}} f\left(X_{t-s}\right)
$$

11. Let $f: \mathbb{R} \rightarrow \mathbb{R}_{+}$be a bounded, positive and measurable function (but not necessarily simple) and otherwise assume the same as in 10 . Show that the claim of 10. holds in this case as well by using monotone convergence theorem.

Suggestion. Define for every $n>0$ a simple function f_{n} such that

$$
f_{n}(x):=\sum_{j=0}^{\infty} j 2^{-n}\left[f(x) \in I_{j, n}\right]
$$

We already know by Problem 4. that these converge monotonically to f. So, by monotone convergence

$$
\mathbf{E}_{x}\left([A] f\left(X_{t}\right)\right)=\lim _{n \rightarrow \infty} \mathbf{E}_{x}\left([A] f_{n}\left(X_{t}\right)\right)=\lim _{n \rightarrow \infty} \mathbf{E}_{x}\left([A] \mathbf{E}_{x}\left(f_{n}\left(X_{t}\right) \mid \mathscr{F}_{s}\right)\right)
$$

for every $A \in \mathscr{F}_{s}$. Now by the Problem 10. we can write

$$
\lim _{n \rightarrow \infty} \mathbf{E}_{x}\left([A] \mathbf{E}_{x}\left(f_{n}\left(X_{t}\right) \mid \mathscr{F}_{s}\right)\right)=\lim _{n \rightarrow \infty} \mathbf{E}_{x}\left([A] \mathbf{E}_{X_{s}} f_{n}\left(X_{t-s}\right)\right) .
$$

By using the monotone convergence theorem twice we get
$\lim _{n \rightarrow \infty} \mathbf{E}_{x}\left([A] \mathbf{E}_{X_{s}} f_{n}\left(X_{t-s}\right)\right)=\mathbf{E}_{x}\left([A] \lim _{n \rightarrow \infty} \mathbf{E}_{X_{s}} f_{n}\left(X_{t-s}\right)\right)=\mathbf{E}_{x}\left([A] \mathbf{E}_{X_{s}} f\left(X_{t-s}\right)\right)$.
Now since $\mathbf{E}_{X_{s}} f\left(X_{t-s}\right)$ is \mathscr{F}_{s}-measurable, we get the claim. If the second usage of the monotone convergence theorem seems somewhat dangerous, don't worry, since

$$
\mathbf{E}_{x}\left([A] \lim _{n \rightarrow \infty} \mathbf{E}_{X_{s}} f_{n}\left(X_{t-s}\right)\right)=\int \lim _{A \rightarrow \infty} \mathbf{E}_{X_{s}(\omega)} f_{n}\left(X_{t-s}\right) \mathbf{P}_{x}(\mathrm{~d} \omega)
$$

For every $\omega \in \Omega$ fixed, the integration inside is with respect to some \mathbf{P}_{z} for some $z \in S$ so the monotone convergence theorem can be used pointwise for every ω.

The 12. is the original 10 . This will be also be part of the next excercise sheet.
12. Let $\left(P_{t, x}\right)$ be as in Lemma 3.13 in Lecture notes (page 22). Let

$$
\mu_{\left(t_{1}, \ldots, t_{n}\right)}^{x}\left(A_{1}, \ldots, A_{n}\right)=\int_{A_{1}} P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right) \ldots \int_{A_{n}} P_{t_{n}-t_{n-1}, x_{n-1}}\left(\mathrm{~d} x_{n}\right)
$$

Show that family of measures $\left\{\mu_{\left(t_{1}, \ldots, t_{n}, t_{n+1}\right)}^{x}: x \in \mathbb{R}^{d}, 0 \leq t_{1}<\cdots<t_{n}\right\}$ satisfies the consistency condition for Kolmogorov Extension Theorem and deduce that therefore, there exists a stochastic process $\left(X_{t}\right)$ such that $\mathbf{P}_{x}\left(X_{t} \in A\right)=\mu_{t}^{x}(A)$.

[^0]: ${ }^{1}$ since $f_{n}(x)\left[f(x) \in I_{j, n}\right]=j 2^{-n}\left[f(x) \in I_{j, n}\right] \leq f(x)\left[f(x) \in I_{j, n}\right]$ for every j, and $\mathbb{R}_{+}=\bigcup I_{j, n}$ and so $f(x) \in I_{j, n}$ for some j

