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Stochastic processes on domains

Suggestions to excercise problem sheet 1

1. Let Ω = [0, 1) be the unit interval and denote Ij = [j2−n, (j+1)2−n) for j ∈ Z and

n ∈ N+. Show that the finite family Gn := { Ij1 ∪ . . . Ijm : 0 ≤ j1 < . . . jm < 2n } is

a σ-algebra on Ω.

Suggestion. We need to check that Gn contains Ω, but since Ω = I0 ∪ · · · ∪ I2n−1 it

is in Gn.

Next if A ∈ Gn, then A = Ij1 ∪ · · · ∪ Ijk
for some 0 ≤ j1 < . . . jk ≤ 2n−1. Now

{0, . . . , 2n − 1} \ {j1, . . . , jk} = {i1, . . . , i2n−1−k} and therefore, AC = Ii1 ∪ · · · ∪
II2n−1−k

∈ Gn.

Now since Gn is finite, we only need to check that the finite unions are in Gn since

{A1, . . . , Aj, . . . } = {B1, . . . , BM} for some Bj ∈ Gn. Let A = B1 ∪ · · · ∪BM where

Bj =
mj⋃
k=1

Ilk,j

for 0 ≤ l1,j < . . . lmj ,j < 2n. Then

A =
M⋃

j=1
Bj =

M⋃
j=1

mj⋃
k=1

Ilk,j
∈ Gn.

2. Let Ω = [0, 1) and Gn as in 1. Let F = B[0, 1), P be the Lebesgue measure

on (Ω,F ) and ξ : Ω → R+ be a Borel measurable. Show from the definition of

conditional expectation that

E (ξ |Gn) (ω) =
2n−1∑
j=0

[ω ∈ Ij ]2n

ˆ
Ij

ξ(ω′) dω′

Suggestion. First we note that the random variable

Z =
2n−1∑
j=0

2ncj[ Ij ]



where cj = E ξ[ Ij ] on the right-hand side is integrable since it is bounded. Then we

note that it is Gn-measurable, since it takes finitely many values {2nc0, . . . , 2nc2n−1}
and moreover,

{Z = 2ncj} = Ij ∈ Gn.

We still need to verify that

E [A ]ξ = E [A ]Z .

Since every A ∈ Gn is of form Ij1 ∪ · · · ∪ Ijk
it is enough to show

E [ Ij ]ξ = E [ Ij ]Z ∀j = 0, . . . , 2n − 1.

The left-hand side is

E [ Ij ]ξ = cj

and the right-hand side is

E [ Ij ]Z =
2n−1∑
k=0

E [ Ij ∩ Ik ]2nck = 2ncjE [ Ij ] = 2n2−ncj = cj.

Therefore, the right-hand side is equal to left-hand side for every j and the claim

follows.

3. Let f : R→ R+ be a simple, measurable function

f(x) =
n∑

k=1
ak[ x ∈ Ak ].

Let Y be bounded and positive random variable, X a real-valued random variable

and assume that X is G -measurable for some sub-σ-algebra G ⊂ F . Show that the

conditional expectation f(X)Y with respect to G is

E (f(X)Y |G ) = f(X)E (Y |G )

almost surely.

Suggestion. Since f(X) is bounded and Y is bounded, the product f(X)Y is

bounded and therefore integrable. Furthermore, since Y is bounded, it is inte-

grable as well. So both E (f(X)Y |G ) and E (Y |G ) can be defined. Moreover,

f(X)E (Y |G ) is integrable and G -measurable as a product of two G -measurable

functions, so the claim makes sense.



Next take any A ∈ G . We want to show that

E ([A ]f(X)Y ) = E ([A ]f(X)E (Y |G ) )

since then the claim follows. Since f is a simple function, this claim can be written

as
n∑

k=1
akE ([A,X ∈ Ak ]Y ) =

n∑
k=1

akE ([A,X ∈ Ak ]E (Y |G ) ) .

Now since X is G -measurable, we know that {X ∈ Ak} ∈ G for every k, and there-

fore, {A,X ∈ Ak} ∈ G in every k. But the definition of the conditional expectation

says that hence

E ([A,X ∈ Ak ]E (Y |G ) ) = E ([A,X ∈ Ak ]Y )

for every k and the claim follows.

4. Let f : R → R+ be a bounded, positive and measurable function (but not nec-

essarily simple) and otherwise assume the same as in 3. Show that the claim of 3.

holds in this case as well by using monotone convergence theorem.

Suggestion. Since f(X) is bounded and Y is bounded, the product f(X)Y is

bounded and therefore integrable. Furthermore, since Y is bounded, it is inte-

grable as well. So both E (f(X)Y |G ) and E (Y |G ) can be defined. Moreover,

f(X)E (Y |G ) is integrable and G -measurable as a product of two G -measurable

functions, so the claim makes sense.

Define for every n > 0 a simple function fn such that

fn(x) :=
∞∑

j=0
j2−n[ f(x) ∈ Ij,n ]

where Ij,n = [ j2−n, (j + 1)2−n). Now 0 ≤ fn(x) ≤ f(x) and1 therefore, it is simple

and measurable (since f is measurable and thus { x : f(x) ∈ Ij,n } is measurable).

Moreover, fn(x) ≤ fn+1(x) since fn(x)[ f(x) ∈ Ij,n ] = j2−n and

fn+1(x)[ f(x) ∈ Ij,n ] = fn+1(x)([ f(x) ∈ I2j,n+1 ] + [ f(x) ∈ I2j+1,n+1 ])
= 2j2−n−1[ f(x) ∈ I2j,n+1 ] + (2j + 1)2−n−1[ f(x) ∈ I2j+1,n+1 ])
≥ j2−n[ f(x) ∈ Ij,n ]

1since fn(x)[ f(x) ∈ Ij,n ] = j2−n[ f(x) ∈ Ij,n ] ≤ f(x)[ f(x) ∈ Ij,n ] for every j, and R+ =
⋃

Ij,n

and so f(x) ∈ Ij,n for some j



So the sequence (fn) is monotonically increasing. Also f(x) − fn(x) ≤ 2−n so f =
limn→∞ fn. Therefore, the monotone convergence theorem says that for every A ∈ G

E ([A ]f(X)Y ) = lim
n→∞

E ([A ]fn(X)Y ) .

By problem 3. we know that

E ([A ]fn(X)Y ) = E ([A ]fn(X)E (Y |G ) )

Now the monotone convergence theorem says (again) that

E ([A ]f(X)E (Y |G ) ) = lim
n→∞

E ([A ]fn(X)E (Y |G ) )

Thus, we have shown that

E ([A ]f(X)E (Y |G ) ) = E ([A ]f(X)Y )

for every A ∈ G and we are done.

A random variable X = (X1, . . . , Xd) is a d-dimensional Gaussian random variable

with zero mean, if its characteristic function ϕ : Rd → C is

ϕX(λ) := E exp (i〈λ , X 〉) = exp(−1
2〈λ , Σλ 〉)

for some positive definite symmetric matrix Σ = (EXiXj )ij ∈ Rd×d. Here 〈x , y 〉 =
x1y1 + . . . xdyd. A d-dimensional Gaussian random X variable with zero mean has

a density function if the covariance matrix Σ (the matrix in 5.) is invertible. Then

the density function is

q(x) = (2π)−d/2|Σ|−1/2 exp(−1
2〈x , Σ−1x) 〉

where |Σ| is the determinant of the matrix Σ. If (X1, X2, . . . , Xd) is a d-dimensional

Gaussian random variable and EX1Xj = 0 for all j 6= 1, then X1 is independent

from (X2, . . . , Xd).

5. Show the Lemma 2.2 (i) from Lecture notes (page 14).

Suggestion. We want to show that X(t) = B(t+ h)−B(h) is a Brownian motion.

First let’s check the expectation:

EX(t) = EB(t+ h) − EB(h) = 0− 0 = 0.



Next let’s compute the covariance. Let’s assume that 0 ≥ t < s and so min(t+h, s+
h) = t+ h and min(h, s+ h) = min(h, t+ h) = h and min(h, h) = h. Now

EX(t)X(s) = E (B(t+ h)−B(h))(B(s+ h)−B(h))
= EB(t+ h)B(s+ h) + EB(h)B(h)
− EB(t+ h)B(h) − EB(h)B(s+ h)
= (t+ h) + h− h− h = t

so the covariance checks. We need to still show the Gaussianity, so let {t1 < · · · < tn}
be time instances. We need to show that Z = (X(t1), . . . , X(tn)) is a Gaussian

random variable so let’s compute its characteristic function

ϕZ(λ) = E exp (i〈λ , Z 〉) = E exp (i
n∑

j=1
λj(B(tj + h)−B(h))).

Let’s denote Y = (B(t1 + h), . . . , B(tn + h), B(h)). This is Gaussian, since B is

Brownian motion. If µ = (λ1, . . . , λn,−
∑n

j=1 λj), then we know that

ϕY (µ) = exp(−1
2〈µ , ΣY µ 〉)

but by construction ϕZ(λ) = ϕY (µ). So we only have to show that 〈µ , ΣY µ 〉 =
〈λ , ΣZλ 〉. Let’s denote ΣZ = A and ΣY = C.

By construction, µj = λj for every j < n + 1 and µn+1 = −∑n
j=1 λj. Moreover,

by the previous computation

Aj,k = EX(tj)X(tk) = tj∧k

and when j, k < n+ 1 we have

Cj,k = EB(tj + h)B(tk + h) = tj∧k + h = Aj,k + h

In other cases Cj,k = h. Thus,

n+1∑
j,k=1

µjµkCj,k =
n∑

j,k=1
λjλk(Aj,k + h) + 2

n∑
j=1

λjµn+1h+ µ2
n+1h

This is tedious, but now notice that

µ2
n+1 =

n∑
j,k=1

λjλk



and

2
n∑

j=1
λjµn+1 = −2

n∑
j,k=1

λjλk = −2µ2
n+1,

and therefore,

n+1∑
j,k=1

µjµkCj,k =
n∑

j,k=1
λjλk(Aj,k + h) +

n∑
j,k=1

λjλkh− 2µ2
n+1h+ µ2

n+1h

=
n∑

j,k=1
λjλkAj,k +

n∑
j,k=1

λjλkh− µ2
n+1h = 〈λ , Aλ 〉

and the claim follows.

6. Show the Lemma 2.2 (ii) from Lecture notes (page 14).

Suggestion. We want to show that {B(t2) − B(t1), . . . , B(tn) − B(tn−1)} is an

independent family of random variables where t1 < · · · < tn. Now that we know that

this is Gaussian, we only need to show that E (B(tj+1)−B(tj))(B(tk+1)−B(tk)) = 0
for j 6= k. But this is simple by assuming that tj < tj+1 ≤ tk < tk+1 which we can

do by symmetry between j and k in the following computation, and so

E (B(tj+1)−B(tj))(B(tk+1)−B(tk)) = E (B(tj+1)B(tk+1)) + E (B(tj)B(tk))
− E (B(tj+1)B(tk)) − E (B(tj)B(tk+1))
= tj+1 + tj − tj+1 − tj = 0.

7. When d = 1 and X = Bt, use integration by parts to show that

EB 2N
t = tN(2N − 1)!! := tN(2N − 1)× (2N − 3)× . . . 3× 1

for every N ≥ 1.

Suggestion. Denote IN = EB 2N
t . Then

IN+1 = ct

ˆ
R
x2Nx2e−

1
2 x2t−1 dx = −ctt

ˆ
R
x2Nx ∂x(e−

1
2 x2t−1) dx

Now since the exponential goes to zero faster than any polynomial we don’t get any

boundary terms from integration by parts and so

IN+1 = ct

ˆ
R
x2Nx2e−

1
2 x2t−1 dx = ctt

ˆ
R
e−

1
2 x2t−1

∂xx
2N+1 dx = (2N + 1)tIN



This gives a recursive equation for IN , which can be solved by

IN = I1

N−1∏
j=1

Ij+1

Ij

= I1

N−1∏
j=1

t(2j + 1) = I1t
N−1(2N − 1)!!

But since I1 = EB 2
t = min(t, t) = t, the claim follows.

8. Using 7. show the Lemma 2.2 (iii) and (iv) from Lecture notes (page 14).

Suggestion. The (iii) is being done already, since we know that B(t) − B(s) ∼
B(t− s), and so E (B(t)−B(s))2 = EB(t− s)2 = (t− s). Furthermore, the

E (B(t)−B(s))2N = E (B(t− s)2N) = (2N − 1)!!(t− s)N ≤ γN |t− s|N

by choosing γN = (2N − 1)!!.

9. A π-system on a set S is a family I 6= ∅ of subsets of S such that ∀A,B ∈ I :
A ∩B ∈ I . Show that the set J1 = { (−∞, x] : x ∈ R } is a π-system on R.

Suggestion. Since (−∞, 0] ∈J1 we can be sure that J1 6= ∅.
Let A,B ∈J1. Then there are real numbers x, y ∈ RÂ such that A = (−∞, x]

and B = (−∞, y]. Since A ∩ B = (−∞,min(x, y)] and min(x, y) ∈ R, we have that

A ∩B ∈J1. Therefore, J1 is a π-system.

10. Let f : R→ R+ be a simple, measurable function

f(x) =
n∑

k=1
ak[ x ∈ Ak ].

Show that the time stationary Markov property for (Xt) with respect to (Ft) implies

that

Ex(f(Xt) |Fs) = EXs f (Xt−s)

Suggestion. We have that

Ex(f(Xt) |Fs) =
n∑

k=1
akEx([Xt ∈ Ak ] |Fs) =

n∑
k=1

akPx (Xt ∈ Ak |Fs ) .

Therefore, by the time stationary Markov property

Ex(f(Xt) |Fs) =
n∑

k=1
akPXs (Xt−s ∈ Ak ) =

n∑
k=1

akEXs [Xt−s ∈ Ak ] = EXs f (Xt−s).



11. Let f : R → R+ be a bounded, positive and measurable function (but not

necessarily simple) and otherwise assume the same as in 10. Show that the claim of

10. holds in this case as well by using monotone convergence theorem.

Suggestion. Define for every n > 0 a simple function fn such that

fn(x) :=
∞∑

j=0
j2−n[ f(x) ∈ Ij,n ]

We already know by Problem 4. that these converge monotonically to f . So, by

monotone convergence

Ex ([A ]f(Xt)) = lim
n→∞

Ex ([A ]fn(Xt)) = lim
n→∞

Ex ([A ]Ex(fn(Xt) |Fs) )

for every A ∈ Fs. Now by the Problem 10. we can write

lim
n→∞

Ex ([A ]Ex(fn(Xt) |Fs) ) = lim
n→∞

Ex ([A ]EXs fn(Xt−s) ) .

By using the monotone convergence theorem twice we get

lim
n→∞

Ex ([A ]EXs fn(Xt−s) ) = Ex ([A ] lim
n→∞

EXs fn(Xt−s) ) = Ex ([A ]EXs f(Xt−s) ) .

Now since EXs f(Xt−s) is Fs-measurable, we get the claim. If the second usage of

the monotone convergence theorem seems somewhat dangerous, don’t worry, since

Ex ([A ] lim
n→∞

EXs fn(Xt−s) ) =
ˆ

A

lim
n→∞

EXs(ω) fn(Xt−s) Px ( dω )

For every ω ∈ Ω fixed, the integration inside is with respect to some Pz for some

z ∈ S so the monotone convergence theorem can be used pointwise for every ω.

The 12. is the original 10. This will be also be part of the next excercise sheet.

12. Let (Pt,x) be as in Lemma 3.13 in Lecture notes (page 22). Let

µx
(t1,...,tn)(A1, . . . , An) =

ˆ
A1

Pt1,x( dx1) . . .
ˆ

An

Ptn−tn−1,xn−1( dxn)

Show that family of measures { µx
(t1,...,tn,tn+1) : x ∈ Rd, 0 ≤ t1 < · · · < tn } satis-

fies the consistency condition for Kolmogorov Extension Theorem and deduce that

therefore, there exists a stochastic process (Xt) such that Px(Xt ∈ A) = µx
t (A).


