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6. Stochastic integration

We have almost enough tools for the rest of the course but still we need the
concept of stochastic integrals. This also provides a meaning for the stochastic
differentiation.

6.1. Stochastic integration with respect to Brownian motion, moti-
vation. Let’s continue with the previous example of Q1 and Q2 in two dimen-
sional case. We obtained the result by analysing the Brownian motion directly,
since in 1-dimensional case the balls are intervals and the spheres are points.
Trying to do the same in higher dimensional case would first correspond to
attempt of using |Bt|2 − dt, but then expectation of the stopping times appear
so we don’t get the similar equation for the probabilities.

However, if we notice that in 1-dimensional case Bt = u(Bt) where u is a
linear function and so it satisfies u

�� = 0. Moreover, the other example of a
martingale B

2
t − t = u(Bt, t) with ∂

2
xu = 2 and ∂tu = −1 and so it satisfies

a parabolic equation ∂tu = 1
2∂

2
xu. We can try other polynomials that satisfy

∂tu = 1
2∂

2
xu to see that u(Bt, t) are martingales.

In 1-dimensional case only solutions of this equation ∂tu = 1
2�u which are

constant in t are the affine functions. In higher dimensions there are much
more solutions to the corresponding equation �u = 0, but if we would know
that u(Bt) is a martingale whenever �u = 0 we could approach the questions
Q1 and Q2.

By looking at the Taylor formula in 1-dimensional case we notice that if u

is smooth enough, we can write

u(Bt) − u(B0) =
n�

k=1
u(Btk+1) − u(Btk

)

=
n�

k=1
u

�(Btk
)(Btk+1 − Btk

) +
n�

k=1

1
2u

��(Btk
)(Btk+1 − Btk

)2 + . . .

where 0 = t0 < t1 < · · · < tn+1 = t and where . . . should vanish faster
that the second order term. If we can find an increasing process At such that
Atk+1 − Atk

= (Btk+1 − Btk
)2 we can express this as

u(Bt) − u(B0) =
n�

k=1
u(Btk+1) − u(Btk

)

=
n�

k=1
u

�(Btk
)(Btk+1 − Btk

) + 1
2

n�

k=1

ˆ tk+1

tk

u
��(Btk

) dAt + . . .

Now if we make the discretisation denser and denser, we should have

lim
n→∞

n�

k=1

ˆ tk+1

tk

u
��(Btk

) dAt + · · · =
ˆ t

0
u

��(Bt) dAt
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The first sum
Mn =

n�

k=1
u

�(Btk
)(Btk+1 − Btk

)

is a discrete martingale, so we could ask for every u ∈ C
2 we can find an

increasing adapted process At such that

u(Bt) − u(B0) − 1
2

ˆ t

0
u

��(Bs) dAs

is a martingale. This is the goal we want to achieve next.

6.2. Quadratic variation. In the sequel (Ft) = ( �Ft) is a completed filtra-
tion. We will follow Revuz–Yor for the construction (there are few other op-
tions).

6.1. Definition. We denote A + (resp. A ) the set of processes adapted to (Ft)
that are have right continuous, finite and increasing (resp. of finite variation)
paths almost surely.

We note that A ∈ A if and only if ∃A
+

, A
− ∈ A + such that A = A

+ − A
−.

The process A
+ + A

− is in A + and it is called the variation of the process A.

6.2. Preliminary definition. Suppose K is progressively measurable and
bounded on finite intervals almost surely. Then the stochastic integral with
respect to to A ∈ A is defined

(X · A)t(ω) :=
ˆ t

0
Ks dAs(ω)

for ω such that K is bounded on finite intervals and t �→ At(ω) is of finite
variation and (X · A)t(ω) = 0 for other ω.

We have not yet introduced the progressively measurable processes, so let’s
do it now.

6.3. Definition. A process K is progressively measurable, if (s, ω) �→ Ks(ω)
as a mapping from [0, t] × Ω → R is σ(B([0, t]) × Ft)-measurable.

6.4. Remark. It might not be evident what kind of processes are progressively
measurable, but every right-continuous and adapted process is progressively
measurable and we will mostly be only dealing with such processes.

This does not yet cover martingales, since

6.5. Lemma. A continuous martingale M that is in A is a constant.

Proof. I’ll add this soon. �
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The following Theorem is the starting point of the stochastic integration.
This provides the increasing adapted process we postulated in the motivation
part.

6.6. Definition. A process X has a finite quadratic variation, if there exists a
process � X, X � such that

� X, X �t = lim
�

k

(Xtk+1∧t − Xtk∧t)2

as the supk|tk+1 − tk| → 0 where the limit is a limit in probability41.

6.7. Theorem. A continuous and bounded martingale M has finite quadratic
variation and � M, M � is the unique continuous process that belongs to A +

such that � M, M �0 = 0 and

M
2 − � M, M �

is a martingale.

Proof. Omitted. �

This results does not yet cover Brownian motion, since it is not bounded
martingale. We can extend this result by using stopping. As a first result let’s
prove the following.

6.8. Lemma. For every stopping time τ we have

� M
τ
, M

τ � = � M, M �τ
.

Proof. I’ll add this soon. �

With this and the definition of local martingales we can extend the Theo-
rem 6.7 to continuous local martingales and so Brownian motion is covered as
well.

6.9. Theorem. Let M be a continuous local martingale. Then there exists a
unique continuous process � M, M � ∈ A + such that � M, M �0 = 0 and

M
2 − � M, M �

is a continuous local martingale.

This can further extended by polarization.

41
i.e. Xn → X in probability if ∀ε > 0: limn P ( |Xn − X| > ε ) = 0
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6.10. Theorem. Let M and N be a continuous local martingales. Then there
exists a unique continuous process � M, N � ∈ A such that � M, N �0 = 0 and

MN − � M, N �

is a continuous local martingale.

Proof. I’ll add this soon. �

This allows us to define the bracket of N and M .

6.11. Definition. The process � M, N � is called the bracket of M and N .

6.12. Example. We already know the bracket of Brownian motion. Since
Xt = B

2
t − t is a martingale, we have by uniqueness that � B, B �t = t.

6.13. Lemma. For every stopping time τ we have

� M
τ
, N

τ � = � M
τ
, N � = � M, N

τ � = � M, N �τ
.

As a consequence of this we see that � M, M � does not vanish unless M is
constant.

6.14. Lemma. Suppose M is a continuous local martingale. We have that
� M, M � = 0 if and only if M is constant.

Proof. I’ll add this soon. �

6.3. Stochastic integral with respect to a continuous semimartingale.
We will next define the stochastic integral in the sense of Itō with respect to a
continuous semimartingale. But first, let’s define the continuous semimartin-
gales.

6.15. Definition. A process X is a continuous semimartingale with respect to
the filtration (Ft), if X = M + A, where M is a continuous local martingale
with respect to (Ft) and A ∈ A is such that A0 = 0.

We have already defined the stochastic integral (K · X) for progressively
measurable K and X ∈ A . Following Revuz–Yor, let’s define the class of
integrals with respect to semimartingales, by assuming that we also know howto
integrate with respect to continuous local martingales. Then in few steps we go
backwards to smaller class of processes for which we can define the integration.

6.16. Definition. Suppose K is locally bounded process. Then we define

(K · X)t := (K · M)t + (K · A)t
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where X = M +A and M is a continuous local martingale. We will also denote

(K · X)t =
ˆ t

0
Ks dXs

6.17. Remark. We notice that if (K ·M) is a continuous local martingale, when
M is a continuous local martingale, then (K ·X) is a continuous semimartingale
for every continuous semimartingale X and this follows from the theorem ??.

We need to define the locally bounded process the make sense of the defini-
tion (6.16).

6.18. Definition. A locally bounded process K is progressively measurable
process for which there exists an increasing sequence (τn) ↑ ∞ of stopping
times and constants (Cn) such that

∀n : |Kτn| ≤ Cn.

6.19. Remark. We notice that every bounded right-continuous adapted process
is locally bounded. Furthermore, every continuous and adapted process is
locally bounded.

In order to make the definition effective we need to define (K · M) for local
martingales. This is the meaning of the follow result.

6.20. Theorem. Suppose M is a continuous local martingale. For every K ∈
L

2
loc(M) there exists a unique continuous local martingale (K · M) such that

for every continuous local martingale N the following holds

� K · M, N � = K · � M, N �.

Note that on the right-hand side � M, N � ∈ A is of finite variation and
so the stochastic integral on the right is defined at least if K is progressively
measurable and as the following definition indicates that is the case. We will
postpone the proof.

6.21. Definition. Suppose M is a continuous local martingale. We define
L

2
loc(M) = { K : K is progressively measurable and

∃(tn) ↑ ∞ : Ex

ˆ τn

0
K

2
s d� M, M �s < ∞. }

6.22. Remark. This space of locally L
2-processes contain all locally bounded

processes, since

Ex

ˆ τn∧n

0
K

2
s d� M, M �s ≤ C

2
n Ex � M, M �τn∧n < ∞

as we will soon see.
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In order to prove Theorem 6.20 we will first need the same result for contin-
uous martingales that have bounded variance.

6.23. Theorem. Suppose M ∈ H
2 is a continuous martingale. For every

K ∈ L
2(M) there exists a unique continuous martingale (K · M) ∈ H

2
0 such

that for every continuous martingale N ∈ H
2 the following holds

� K · M, N � = K · � M, N �.

Moreover, the mapping K �→ K · M is an isometry42 between L
2(M) → H

2
0 .

The idea of proving these theorems is simple. We use general result from
functional analysis for Hilbert spaces together with Optional Stopping Theorem
to deduce the existence and uniqueness of the martingale (K · M). We will
postpone this proof for a while. But let’s define the spaces H

2, H
2
0 and L

2(M)
so that we have a complete statement.

6.24. Definition. We define

H
2 = { M : M is a L

2-bounded continuous martingale }

and
H

2
0 = { M ∈ H

2 : M0 = 0 }
where M is L

2-bounded means that

sup
t

E |Mt|2 < ∞.

6.25. Definition. Suppose M ∈ H
2 is a continuous L

2-bounded martingale.
We define

L
2(M) = { K : K is progressively measurable and

Ex

ˆ ∞

0
K

2
s d� M, M �s < ∞. }

Instead of proving the Theorem 6.23 let’s show a special case of it to see
what these different things mean.

6.26. Example. Let M be a continuous martingale. Let τ be the first exit
time of M from the interval (−N, N). Then t → Mt∧τ is a in H

2, since

E M
2
t∧τ ≤ E M

2
τ < ∞

so we if we just denote M = M
τ , we may assume that M ∈ H

2. The elementary
process K which is defined as

Kt(ω) =
n�

j=1
[ tj ≤ s < tj+1 ]Ktj (ω)

42
i.e. it preserves the norm � K �L2(M) = � K · M �H2
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where Ktj are Ftj -measurable and are uniformly bounded. Since K is right-
continuous and adapted, it is progressively measurable. Moreover,

Ex

ˆ ∞

0
K

2
s d� M, M �s =

n�

j=1
Ex K

2
tj

ˆ tj+1

tj

d� M, M �s ≤ CEx � M, M � tn+1 ,

and since M
2 − � M, M � is a martingale, we have

Ex � M, M �t = Ex M
2
t − x

2

and so, K ∈ L
2(M). Let’s verify that there exists a unique martingale (K ·M).

We make a guess that

(K · M)t =
�

j

Ktj (Mtj+1∧t − Mtj∧t)

or that the integral is given as a Riemann sum. This is martingale, since for
every bounded stopping time ν we have

Ex (K · M)ν = Ex

�

j

Ktj (M ν
tj+1 − M

ν
tj

) = Ex

�

j

Ktj E
�
M

ν
tj+1 − M

ν
tj

| Ftj

�

where the second identity follows from the Ftj -measurability of Ktj . Since M
ν

is a martingale, the right-hand side is 0. But since (K · M)0 = 0 by definition,
we have shown that Ex (K · M)ν = Ex (K · M)0 which is equivalent with the
martingale property.

We still need to verify that (K · M) satisfies the

� K · M, N � = K · � M, N �

for every N ∈ H
2. The right-hand side is

(K · � M, N �)t =
�

j

Ktj (� M, N �t∧tj+1 − � M, N �t∧tj ).

Therefore, we should show that

(K · M)N −
�

j

Ktj (� M, N �tj+1 − � M, N �tj )

is a martingale to verify the claim and since by our guess

(K · M)N =
�

j

Ktj (M tj+1N − M
tj N)

this reduces to
�

j

Ex Ktj E
�
M

tj+1
ν Nν − M

tj
ν Nν − � M, N �tj+1

ν + � M, N �tj
ν | Ftj

�
= 0

for every bounded stopping time ν. But this follows from the identity � M, N �η =
� M

η
, N �, since for instance

M
tj N − � M, N �tj = M

tj N − � M
tj , N �
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is a martingale by the definition of bracket.

6.4. Itō formula. Next we will introduce the Itō formula.

6.27. Theorem (Itō formula). Let X = (Xj) be a continuous d-dimensional
semimartingale and f ∈ C

2(Rd
,R). Then f(Xt) is a continuous semimartin-

gale and moreover,

f(Xt) − f(X0) =
d�

j=1

ˆ t

0
∂jf(Xt) dX

j
t + 1

2

d�

j,k=1

ˆ t

0
∂jkf(Xt) d� X

j
, X

k �t

almost surely.

Here the d-dimensional semimartingale (resp. local martingale) means a pro-
cess X = (X1

, . . . , X
d) such that each coordinate process X

j is a semimartin-
gale (resp. local martingale). In the same way we could talk about complex
d-dimensional semimartingales and local martingales, just by requiring the
real and imaginary parts to be d-dimensional semimartingales and local mar-
tingales, respectively.

We notice already one thing. If some of the components of X, say X
j, is of

finite variation, then � X
j
, X

k � = � X
k
, X

j � = 0. This make the assumption
∂jkf is continuous seem superfluous since we are integrating with respect to
zero measure. Just by making tiny changes the following stronger result can
be shown.

6.28. Theorem (Itō formula (Version II)). Let X = (Xj) be a continuous d-
dimensional semimartingale and let’s assume that X

l+1
, . . . , X

d are of finite
variation. If f ∈ C

1(Rd
,R) and (f 1

, . . . , f
l) ∈ C

2(Rl
,R), then f(Xt) is a

continuous semimartingale and

f(Xt) − f(X0) =
�

j

ˆ t

0
∂jf(Xt) dX

j
t + 1

2
�

j,k≤l

ˆ t

0
∂jkf(Xt) d� X

j
, X

k �t

almost surely. In differential form43 the formula becomes

df(Xt) =
�

j

∂jf(Xt) dX
j
t + 1

2
�

j,k≤l

∂jkf(Xt) d� X
j
, X

k �t

The Itō formula follows from the Weierstraß Theorem for approximating
continuous functions on compact sets with polynomials. The result for poly-
nomials follow from the Integration by Parts formula.

43
by differential form we mean that insted of writing

´
t

0 dXs we write just dXt
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6.29. Theorem (Integration by Parts). If X and Y are two continuous semi-
martingales, then

XtYt = X0Y0 +
ˆ t

0
Xs dYs +

ˆ t

0
Ys dXs + � X, Y �t

almost surely or in differential form

d(XY )t = Xt dYt + Yt dXt + d� X, Y �t

Proof. I’ll add this soon as well as some approximation results. �

6.5. Stochastic dominated convergence theorem and other results.
Here we collect some results we used in proving the Itō formula. These are
used later on as well.

6.30. Theorem (Dominated convergence for stochastic integral). Let X be
a continuous semimartingale. Suppose (Kn) is a sequence of locally bounded
processes and K is locally bounded process such that |Kn| ≤ K for every n,
and K

n
t → 0 for every t almost surely, then

sup
0≤t≤ρ

ˆ t

0
K

n
s dXs → 0

in probability for every ρ.


