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9. Tanaka’s formula and local time

We have a reasonable comprehensive picture on the stopped Brownian mo-
tion that is stopped before leaving a given domain G ⊂ Rd. We will next study
the reflecting Brownian motion (let’s call it R) in a given domain G.

The process R should behave exactly like a Brownian motion inside the
domain and when it “hits” the boundary, it should reflect towards the normal
direction. This already means that the domain cannot be arbitrarily rough,
since we must be able to say what the normal direction is.

The simplest possible geometry for G in Rd is the case of a half-space G =
Rd−1 × (0, ∞) with a flat boundary ∂G = Rd−1 × {0}.

Intuitively we see that since the reflection is towards the last coordinate,
then we should have R = (B1, . . . , Bd−1, Rd), where (B1, . . . , Bd−1, Bd) is a
d-dimensional Brownian motion. Since outside the half plance, namely when
Rd = 0, the processes should be independent, we should have Rd = f(Bd).
This brings us the 1-dimensional case.

In the 1-dimensional case, it seems evident that Rt = |Bt| is the reflecting
Brownian motion. We already know that R is a continuous submartingale and
by Doob–Meyer decomposition, we know that it is a continuous semimartin-
gale, i.e. we can write R = M + A, with some continuous local martingale M

and continuous, increasing and adapted process A.
Since our ultimate goal is to generalize this to higher dimensional case as

well with more complicated domains G, we should find out what M and A are.
Unfortunately, f(x) = |x| is not a C2-function, so we cannot just use Itō

formula to find out the decomposition. But if we would formally compute the
derivatives (or compute the weak derivatives), we obtain that f �(x) = [ x >

0 ] − [ x < 0 ] for almost every x. Now the second derivative becomes 2δ0 so it
has mass only at 0 with total mass 2.

Formally this would suggest that

Rt = R0 +
ˆ t

0
([ Bs > 0 ] − [ Bs < 0 ]) dBs +

ˆ t

0
δ0(Bs) ds.

It turns out that we are really on the right track, since we can generalize Itō
to handle this case, since the absolute value function f is convex. For this we
introduce a left handed derivative, f �

− which is just

f �
−(x) = lim

h↓0

f(x − h) − f(x)
−h

9.1. Example. (1) When f ∈ C1, then f � = f �
−. Moreover, the left handed

derivative is linear operation.
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(2) When f(x) = x+, then f is continuosly differentiable outside 0, so
f �

−(x) = f �(x) = [ x > 0 ] whenever x �= 0. When x = 0, then

f �
−(0) = lim

h↓0

0 − 0
−h

= 0

so f �
−(x) = [ x > 0 ] for every x.

(3) When f(x) = x−, then f is continuosly differentiable outside 0, so
f �

−(x) = f �(x) = −[ x < 0 ] whenever x �= 0. When x = 0, then

f �
−(0) = lim

h↓0

h − 0
−h

= −1

so f �
−(x) = −[ x ≤ 0 ] for every x.

(4) When f(x) = |x| = x+ + x−, we have by the linearity that f �
−(x) =

[ x > 0 ] − [ x ≤ 0 ] for every x.

9.2. Theorem. Suppose X is a continuous semimartingale and f : R → R a
convex function. Then there exists a continuous increasing process Af such
that

f(Xt) = f(X0) +
ˆ t

0
f �

−(Xs) dXs + 1
2Af

t

Proof. Suppose first that f is convex and C2. Then f �
− = f � and we can use

Itō formula to deduce that

f(Xt) = f(X0) +
ˆ t

0
f �

−(Xs) dXs + 1
2

ˆ t

0
f ��(Xs) d� X, X �s

Since f is convex, its second derivative f �� is positive, i.e. f ��(Xs) ≥ 0. Thus,
if we denote

Af
t :=

ˆ t

0
f ��(Xs) d� X, X �s

we have found the Af is continuous and increasing and it satisfies the conditions
we had for it.

When f is just convex (like the absolute value function), then we still know
that it is Lipschitz continuous on closed and bounded intervals. Moreover, it
has a left handed derivative at every point. To proceed we approximate the
function f by a sequence of smooth convex functions fn which we define as

fn(x) := n

ˆ
R

f(x + y)ψ(ny) dy = n

ˆ
R

f(y)ψ(n(y − x)) dy

where ψ ≥ 0 is a C∞-function that is 0 outside an interval [a, b] where a < b < 0.
We also require that the integral of ψ is one, i.e.ˆ

R
ψ(x) dx = 1.
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Since f is Lipschitz continuous on the interval [x + a/n, x + b/n], it is bounded
there and thus, fn is well defined and continuous function for every n. More-
over, this implies that we may use dominated convergence to take the differ-
entiation inside the integral and thus,

f �
n(x) = −n2

ˆ
R

f(y)ψ�(n(y − x)) dy

and we obtained that fn ∈ C1. We can repeat this differentiation as many
times as we please, so fn ∈ C∞. Furthermore, since by change of variable
ny = z, we find that

fn(x) =
ˆ
R

f(x + z

n
)ψ(z) dz

so the dominated convergence theorem implies that

lim
n→∞

fn(x) =
ˆ
R

lim
n→∞

f(x + z

n
)ψ(z) dz = f(x)

ˆ
R

ψ(z) dz = f(x).

We also find out (Excercise) that fn is also a convex function and f �
n(x) →

f �
−(x) for every x. We can even find out46 that |f �

−(x)| ≥ |f �
n(x)|.

The first part of the proof showed that there are continuous and increasing
processes Afn such that

fn(Xt) = fn(X0) +
ˆ t

0
f �

n(Xs) dXs + 1
2Afn

t

Since fn(x) → f(x) for every x, we deduce that

f(Xt) = f(X0) + lim
n→∞

� ˆ t

0
f �

n(Xs) dXs + 1
2Afn

t

�

We want to show that the stochastic integrals converge as well and for this,
we will use the dominated convergence for stochastic integrals. If we denote
Kn

t = f �
n(Xt), then Kn

t → f �
−(Xt) and |Kn

t | ≤ |f �
−(Xt)|. Since f is Lipschitz

on a closed and bounded intervals, f �
− is bounded. Therefore, we can use the

dominated convergence for stochastic integrals (Theorem 6.30) and we find out
that

lim
n→∞

ˆ t

0
f �

n(Xs) dXs =
ˆ t

0
f �

−(Xs) dXs

in probability uniformly for every t ≤ ρ. We can therefore choose a subsequence
(fnk

) so that this convergence is uniform almost surely. This implies that

1
2 lim

nk→∞
A

fnk
t = f(Xt) − f(X0) −

ˆ t

0
f �

−(Xs) dXs

46this will be added to the suggested solutions of the excercises
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uniformly for every t ≤ ρ. If we now just define Af
t := limnk→∞ Af

nk
we are

done, since Af is continuous as a uniform limit of continuous processes almost
surely and increasing as a limit of increasing processes. �

This result gives us the Tanaka formula, which provides the semimartingale
decomposition of the reflecting Brownian motion R = |B|.

9.3. Theorem (Tanaka’s formula). For every a ∈ R, there exists an increasing
continuous process La such that

|Xt − a| = |X0 − a| +
ˆ t

0
sgn (Xs − a) dXs + La

t

(Xt − a)+ = (X0 − a)+ +
ˆ t

0
[ Xs > a ] dXs + 1

2La
t

(Xt − a)− = (X0 − a)− −
ˆ t

0
[ Xs ≤ a ] dXs + 1

2La
t

where sgn (x) = [ x > 0 ] − [ x ≤ 0 ].

9.4. Definition. The process La is called the local time of the semimartingale
X at the point a.

Proof. Since f1(x) = (x − a)+ and f2(x) = (x − a)− are both convex functions,
we can use the Theorem 9.2 and we obtain that

(Xt − a)+ = (X0 − a)+ +
ˆ t

0
[ Xs > a ] dXs + 1

2Af1
t

(Xt − a)− = (X0 − a)− −
ˆ t

0
[ Xs ≤ a ] dXs + 1

2Af2
t

for some continuous and increasing processes Af1 and Af2 which might be
different. However, by subtracting these identities and using the fact that
f1(x) − f2(x) = (x − a)+ − (x − a)− = x − a we obtain

(Xt − a) = (X0 − a) +
ˆ t

0
([ Xs > a ] + [ Xs ≤ a ]) dXs + 1

2(Af1
t − Af2

t )

= (X0 − a) + Xt − X0 + 1
2(Af1

t − Af2
t ) = Xt − a + 1

2(Af1
t − Af2

t )

and therefore, Af1 = Af2 so we can define La
t = Af1

t so that the last two
identities are now shown. Since |x − a| = (x − a)+ + (x − a)− and [ x >

a ] − [ x ≤ a ] = sgn (x − a) we obtain by summing the last two identities
together that

|Xt − a| = |X0 − a| +
ˆ t

0
sgn (Xs − a) dXs + 1

2(Lf
t + Lf

t )

and the claim is shown. �
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Returning to the reflecting Brownian motion Rt = |Bt| we can now express
it in terms of a local martingale and an increasing process, namely

Rt = R0 +
ˆ t

0
sgn (Bs) dBs + Lt

where Lt = L0
t is the local time of the Brownian motion at 0. We are nearly

done with the properties of 1-dimensional reflecting Brownian motion, since
next we show that dLt = 0 whenever Bt �= 0 or that L only increases when
Bt = 0. Once we have shown that we see that

Rτ
t − Rτ

τ0 =
ˆ τ∧t

τ0

sgn (Bs) dBs

for every stopping times τ0 < τ such that Bs �= 0 for every τ0 ≤ s ≤ τ .
If we denote

βt :=
ˆ t

0
sgn (Bs) dBs

which is a continuous local martingale with respect to the (F B
t ), the previous

identity may be written as

Rτ
t − Rτ

τ0 = βτ
t − βτ

τ0 .

The process βis really Brownian motion by the Lévy’s Characterization The-
orem. In the following, we say that a process X is a (Ft)-Brownian motion,
if it has the same law as Brownian motion and the Xt − Xs is independent of
the σ-algebra Fs for every t > s.

9.5. Theorem (Lévy’s Characterization Theorem). Suppose X is a (Ft)-
adapted continuous d-dimensional process and suppose X0 = 0. Then the
following are equivalent

1. X is a (Ft)-Brownian motion.
2. X = (X1, . . . , Xd) is a d-dimensional continuous local (Ft)-martingale

and � Xj, Xk �t = [ j = k ]t.
3. X = (X1, . . . , Xd) is a d-dimensional continuous local (Ft)-martingale

and for every for every f = (f1, . . . , fd) with fj ∈ L2(R+) the process

Y f
t := exp

�
i

d�

k=1

ˆ t

0
fk(Xs) dXk

s + 1
2

d�

k=1

ˆ t

0
f 2

k (Xs) ds
�

is a complex and bounded martingale.

Proof. This is left to excercises. �
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We can now verify that β is Brownian motion. First of all it is a continuous
local martingale with respect to the (F B

t ), the completed filtration generated
by the Brownian motion B. Moreover, its quadratic variation process is

� β, β �t =
ˆ t

0
(sgn (Bs))2 d� B, B �s =

ˆ t

0
1 ds = t

so β is a (F B
t )-Brownian motion by the Lévy’s Characterization Theorem.

We have almost shown that the R = |B| satisfies the requirements we should
have for a reflecting Brownian motion in 1-dimensional case when it reflects
from 0. We still need to verify that the local time does not increase when
Bt �= 0. This follows from the next result.

9.6. Theorem. Suppose X is a continuous semimartingale. For every t ≥ 0
we have ˆ t

0
|Xs − a| dLa

s = 0

almost surely.

Proof. We will use both Itō formula for the semimartingales Yt = |Xt − a| and
Zt = Xt − a with a function f(x) = x2. Since f(Yt) = |Xt − a|2 = (Xt − a)2 =
f(Zt), we can then compare the two different representations. First of all

f(Zt) − f(Z0) = 2
ˆ t

0
Zs dZs + � Z, Z �t = 2

ˆ t

0
(Xs − a) dXs + � X, X �t

Secondly,

f(Yt) − f(Y0) = 2
ˆ t

0
Ys dYs + � Y, Y �t = 2

ˆ t

0
|Xs − a| dYs + � X, X �t

Therefore, everything else being the same we haveˆ t

0
(Xs − a) dXs =

ˆ t

0
|Xs − a| dYs

By the Tanaka formula, we know that dYs = sgn (Xs − a) dXs + dLa
s and soˆ t

0
|Xs − a| dYs =

ˆ t

0
|Xs − a|sgn (Xs − a) dXs +

ˆ t

0
|Xs − a| dLa

s

Since |x|sgn (x) = x for every x, we obtain thatˆ t

0
(Xs − a) dXs =

ˆ t

0
|Xs − a| dYs =

ˆ t

0
(Xs − a) dXs +

ˆ t

0
|Xs − a| dLa

s

which implies the claim. �


