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8. Stochastic differential equations

We would like to generalise the Kakutani’s representation theorem from
Brownian motion and harmonic functions to more general partial differential
equations.

Therefore, let’s denote by L the following second order differential operator

L : f �→
�
x �→ 1

2
�

j,k

A
jk(x)fjk(x) +

�

j

b
j(x)fj(x)

�
.

This generalises the Laplace operator, since if we choose A
jk(x) = [ j = k ] and

b
j(x) = 0, we obtain that L = 1

2�.
Suppose we have a function u : R × Rd → R that is once continuosly differ-

entiable in the first coordinate, say t, and twice continuosly differentiable with
respect to the rest of the coordinates, say x.

Then we can use Itō formula to compute, when

Zt = u(s − t, Xt)

is a local martingale on [0, s). We would like to link this problem (when Z is a
local martingale) with the differential operator L. As an axample, if X is the
Brownian motion or L = 1

2�, then we notice that

dZt = dMt − ∂tu(s − t, Bt) dt + 1
2�u(s − t, Bt) dt.

This Z is a local martingale if ∂t = 1
2�u for (0, s) × Rd, which gives the link

between the Laplace operator and Brownian motion we are after.
We can generalize this by making the ansatz that X is satisfies a following

stochastic differential equation

(8.1) dXt := σ(Xt) dBt + c(Xt) dt, X0 = x

for some matrix valued function σ : z �→ (σij(z)) and for a vector valued func-
tion c : Rd → Rd.

If we apply Itō formula to the process Zt = u(s − t, Xt) then as we with the
Brownian motion, we obtain that

dZt = −∂tu(s−t, Xt) dt+
�

j

uj(s−t, Xt) dX
j
t + 1

2
�

j,k

ujk(s−t, Xt) d� X
j
, X

k �t.
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If we assume that Lu = 0, as with Brownian motion and if in addition
d� X

j
, X

k �t = A
jk(Xt) dt and if c(Xt) = b(Xt), then

dZt =
�

− ∂tu(s − t, Xt) +
�

j

uj(s − t, Xt)bj(Xt)

+ 1
2

�

j,k

A
jk(Xt)ujk(s − t, Xt)

�
dt + dMt

= Lu(s − t, Xt) dt + dMt = dMt

so we obtain a same link between Z being a local martingale and u solving
the partial differential equation Lu = 0. We have already found c, since we
just really assumed c = b. The matrix σ needs to be derived, but we can find
it by computing d� X

j
, X

k �t. Since Xt = Nt + At, the bracket � X
j
, X

k �t =
� N

j
, N

k �t, where

dN
j
t =

�

k

σ
jk(Xt) dB

j
t .

This implies that

d� X
j
, X

k �t =
�

l,m

σ
jm(Xt)σkl(Xt) d� B

m
, B

l �t.

Since we already know that d� B
m

, B
l �t = [ m = l ] dt, we obtain

d� X
j
, X

k �t =
�

l

σ
jl(Xt)(σ�)lk(Xt) dt = (σσ

�)jk(Xt) dt,

where the matrix function σ
� is the transpose of the matrix functin σ. So we

require that σ satisfies σσ
� = A,

How can we utilise this nowobtained martingale property ? By using Op-
tional Stopping.

8.2. Lemma. Suppose that X satisfies the stochastic differential equation (8.1).
Suppose further, that u is satisfies a initial value problem

(8.3)






∂tu = Lu, joukossa (0, ∞) × Rd

u(0, x) = f(x) jokaisella x ∈ Rd

and moreover, u is bounded and twice continuosly differentiable with respect
to x and once continuosly differentiable with respect to t If the coefficients
in the equation (8.1) are chosen that c = b and σσ

� = A, then we have a
representation

u(x, t) = Ex f(Xt) .
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Proof. We already deduced above that Zt = u(s − t, Xt) is a continuous local
martingale in the interval [0, s). Since u is bounded, the process Z is uniformly
integrable and therefore, we have

Zs = lim
t↑s

Zt = u(0, Xs) = f(Xs).

Since Ex Zs = Ex Z0 = u(s, x), the claim follows. �

This shows that there is a certain duality between the existence of the solu-
tion to the parabolic initial value problem (8.3) between the uniqueness of the
stochastic differential equation (8.1), since if the assumptions of the previous
lemma is satisfied, then

u(t, x) = Ex f(Xt) = Ex f(�Xt)

for every x, for every t and for every f whenever X and �X are two (possibly
different) solutions to the stochastic differential equation (8.1) starting at x.
This however implies that Xt and �Xt are identically distributed given they
start at the same point x.

Similarly, if we assume the existance solution to the stochastic differential
equation (8.1), the previous lemma shows the uniqueness of the classical solu-
tions to the initial value problem.

8.4. Remark. We could also ask whether there is a duality between the the
uniqueness of the solutions of the initial value problem (8.3) and the existence
of the solutions to the stochastic differential equations. We notice that the
uniqueness should imply that the existence of the transition functions (Pt) of
a Markov process and for those we do have an existence theorem. Verifying
that however takes some effort.

The other dual question would be if the uniqueness of the stochastic differ-
ential equation (8.1) would could ask if this implies the solvability of the initial
value problem (8.3).

These are connected via socalled martingale problem which we, however,
have to leave outside of the course. Uniqueness of the solutions to the sto-
chastic differential equation would imply that the solutions are strong Markov
processes and this like in the case of Kakutani’s representation theorem leads
towards showing the existence since we used Markov property in showing that
the w(x) = Ex f (Bτ ) was a solution to the boundary value problem.

8.1. Itō’s existence and uniqueness result for SDEs. We have noticed
that solving partial differential equations and stochastic differential equations
are closely connected. Next we will show that under certain assumptions we
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can solve the stochastic differential equation in the same way as an ordinary
differential equation. The following is the classical result by Itō (1942).

Since integration is the inverse operation to the differentiation, the stochastic
differential equation really is the stochastic integral equation

(8.5) Xt = X0 +
ˆ t

0
σ(s, Xs) dBs +

ˆ t

0
b(s, Xs) ds

where b : R+ ×Rd → Rd and σ : R+ ×Rr → Rd are Borel measurable functions.

8.6. Theorem. Suppose that b and σ satisfy the local Lipschitz condition

∀n∃K∀|x|, |y| ≤ n : |b(t, x) − b(t, y)| + � σ(t, x) − σ(t, y) � ≤ K|x − y|.

Then the solutions of the stochastic integral equation (8.5) are pathwise unique.

If we assume more on the coefficients we can prove the existence as well.

8.7. Theorem. Suppose that b and σ satisfy the global Lipschitz condition on
the time interval [0, s]

∀|x|, |y| : |b(t, x) − b(t, y)| + � σ(t, x) − σ(t, y) � ≤ K|x − y|.

together with the condition of linear growth

|b(t, x)| + |σ(t, x)| ≤ C(1 + |x|)

If X0 is independent from the given Brownian motion B and it has a finite
second moment, then the equation (8.5) has a unique strong solution.

Before we can prove these we need to define what is meant by stroung
solutions and pathwise uniqueness.

8.8. Definition. Suppose we are given (Ω, F , P) and a filtration (Ft) on Ω.
We call the pair (X, B) a (Ft)-weak solution to the stochastic differential
equation (8.5) if

i) X is continuous d-dimensional stochastic processes adapted to (Ft)
ii) B is continuous r-dimensional Brownian motion with respect to (Ft)

iii) we have ˆ t

0
� σ(s, Xs) �2 + |b(s, Xs)| ds < ∞

for Px-almost surely for every x

iv) together, the processes X and B satisfy the equation (8.5).

Now that we have defined a (weak) solution, we can define the strong solu-
tion.
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8.9. Definition. Suppose we are given (Ω, F , P) and a filtration (Ft) on Ω.
We call the process X a strong solution to the stochastic differential(8.5), if
(X, B) is an ( �

F B
t )-weak solution.

8.10. Remark. It is clear that if the stochastic differential equation (8.5) has
a strong solution then it always has a weak solution, but the other direction
does not hold in general. We’ll postpone the example for a while.

The uniqueness has also two different flavours.

8.11. Definition. Suppose (X, B) and (X �
, B) are (Ft)-weak solutions and

(F �
t)-weak solutions respectively with the same Brownian motion. Suppose

X0 = X
�
0 almost surely. We say that the solution is pathwise unique, if this

implies that ∀t : Xt = X
�
t holds P-almost surely.

8.12. Definition. Suppose (X, B) and (X �
, B

�) are (Ft)-weak solutions and
(F �

t)-weak solutions possibly on different probability spaces (Ω, F , P) and
(Ω�

, F �
, P�) respectively. Suppose X0 = X

�
0 in distribution, i.e. we suppose

that ∀U : P(X0 ∈ U) = P�(X �
0 ∈ U). We say that the solution is unique in

law, if this implies that P ( ∀t ∈ F : Xt ∈ Ut ) = P�(∀t ∈ F : X
�
t ∈ Ut) for every

F = {t1, . . . , tn}.

8.13. Remark. This time it is no longer so clear that pathwise uniqueness im-
plies uniqueness in law, since the probability spaces can change. This, however,
does hold by the result of Yamada and Watanabe (1971). The other direction
does not hold and the example will, again, be postponed.

Actually, Yamada and Watanabe showed that the existence of a weak solu-
tion together with pathwise uniqueness implies that the solutions are strong
solutions.


