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7. Recurrence, transience and Kakutani

7.1. Recurrence and transience. Let’s return to the questions that partially
settled the claim that that the Brownian motion lives in the whole space. This
was done by analysing the following questions:

Q1. Let x0, x ∈ Rd. Will Brownian motion always hit the point x when
B0 = x0 ?

Q2. Let x0, x ∈ Rd and r > 0. Will Brownian motion always hit the the
ball of radius r and centered at the point x when B0 = x0 ?

Q3. Let x0 ∈ Rd, and r > 0. Will Brownian motion always hit the comple-
ment of the ball of radius r and centered at the origin ?

which we pharaphrased with the help of first hitting time as:
Q1. Let x0, x ∈ Rd. Is Px0

�
τ{x} < ∞

�
= 1 ?

Q2. Let x0, x ∈ Rd and r > 0. Is Px0

�
τBr(x) < ∞

�
= 1 ?

Q3. Let x0 ∈ Rd and r > 0. Is Px0

�
τBr(0)C < ∞

�
= 1 ?

We already showed that Q3 has an affirmative answer in any dimensions.
We showed that Q1 and Q2 also hold when d = 1. But we were lacking a
map that would translate the problem from higher dimensions to a question
on an interval. And for this we can use the Itō formula since this was the one
motivation for the introduction of the stochastic integration to begin with.

Let’s use the terminalogy that if the hitting probability to a set is 1, then the
Brownian motion is recurrent to the set. If not, then we say that the Brownian
motion is transient to the set.

If a set happens to such that the probability of hitting it is 0 then we call
the set polar.

In 1-dimensional case, we used Brownian motion itself to the first exit time
τ from the interval (a, b). Since Brownian motion is a martingale, we deduced
that for x ∈ (a, b) we have

Px ( Bτ = a ) = b − x

b − a
, Px ( Bτ = b ) = x − a

b − a

In higher dimensional case, we can change the coordinates so that the center
of the ball in Q2 is origin and in Q1 the point we are hitting is the origin.
This makes the setting invariant with respect to rotations and since Brownian
motion is invariant under rotations, we can turn the problem to 1-dimensional
by considering the modulus (or the squared modulus) of the Brownian motion,
i.e.

Xt = |Bt|2 =
�

j

(Bj
t )2

Now if we set τr := inf{ t > 0 : Xt = r }, then the questions become
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i) is Px ( τ0 < ∞ ) = 1 ?
ii) is Px ( τr < ∞ ) = 1 when r > 0 ?

Since we are in 1-dimensional setting already, let’s study these simultaneously
by looking at the following problem: what is the probability

p(x, r, R) := Px ( τr < τR ) =?

when r < |x| < R. We can use the Itō formula to answer this. Let ϕ : R+ → R
be (hopefully) C

2-function and let Zt = ϕ(Xt). If Zt is a continuous local
martingale and τ = inf{ t > 0 : Xt /∈ (r, R) }, then by Optional Stopping
Theorem

Ex Z
τn
τ = Ex Z0 = ϕ(x)

where τn ↑ ∞ and Z
τn is UI martingale. If ϕ is continuous over the closed

interval [r, R], then we can take the limit n → ∞ and we obtain that

Ex Zτ = ϕ(x).

But since

Ex Zτ = ϕ(r)Px ( Xτ = r )+ϕ(R)Px ( Xτ = R ) = ϕ(R)+p(x, r, R)(ϕ(r)−ϕ(R)).

we can deduce that

(7.1) Px ( τr < τR ) = p(x, r, R) = ϕ(R) − ϕ(x)
ϕ(R) − ϕ(x)

So computing the probability is reduced in finding a function ϕ that turns the
process Z into a continuous local martingale. And what would be better than
the Itō formula, since

dZt = ϕ
�(Xt) dXt + 1

2ϕ
��(Xt) d� X �t.

Let’s compute what is dXt, so that we can find the local martingale and the
finite variation part. Since Xt = f(Bt) where f(x) = x

2
1 + · · · + x

2
d, we have

dXt =
�

j

2B
j
t dB

j
t +

�

j

dt = dMt + d dt.

Since the quadratic variation of a semimartingale is the quadratic variation of
its martingale part we have � X �t = � M �t and therefore,

d� X �t =
�

j,k

4B
k
t B

j
t d� B

k
, B

j �t =
�

j

4(Bj
t )2 dt = 4Xt dt

where we used the fact that the components of Brownian motion are indepen-
dent which implies that � B

k
, B

j � = 0 (Ex). For this computation, we used
the formula

� H · M, K · N � = HK · � M, N �
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This implies that

dZt = dNt + nϕ
�(Xt) dt + 2ϕ

��(Xt)Xt dt.

and thus, Zt is a continuous local martingale if

dϕ
�(x) + 2ϕ

��(x)x = 0 =⇒ f
�(x)

f(x) = − d

2x
=⇒ f(x) = Cx

−d/2

where f(x) := ϕ
�(x). If we choose C = 1, then by integrating f we find the

fucntion ϕ, which therefore is of form

ϕ(x) =






ln|x|, d = 2,

Cdx
(2−d)/2

, d ≥ 3,

Let’s assume first that d = 2. Then

Px ( τr < ∞ ) ≥ Px ( τr < τR ) = ln R − ln x

ln R − ln r
→ 1

when R ↑ ∞, so Q2 has an affirmative answer in plane or Brownian motion is
recurrent to discs irregardless how small it is and how far it is. But Q1 has a
different answer in plane.

Since
Px ( τ0 < τR ) ≤ Px ( τr < τR ) = ln R − ln x

ln R − ln r
→ 0

when r ↓ 0, we have Px ( τ0 < τR ) = 0 for every x �= 0 and for every R > |x|.
Since Brownian motion is continuous, τR ↑ ∞, as R ↑ ∞. Therefore,

Px ( τ0 < ∞ ) = 0

for every x �= 0. In the Excercise sheet 4 we extend this by strong Markov
property to cover even the case x = 0 and so Px ( τ0 < ∞ ) = 0 for every
x ∈ R2. This means that single points are polar sets in plane or Brownian
motion will (almost surely) never hit a given point in a plane irregardless where
it starts.

The state of affairs change more for d ≥ 3. Then α := 2−d
2 < 0 and by

monotone convergence

Px ( τr < ∞ ) = lim
R→∞

Px ( τr < τR ) = lim
R→∞

R
α − x

α

Rα − rα
= x

α

rα
< 1

as long as x > r, so Brownian motion will not hit a ball of radius r > 0 with
positive probability irregardless how large the ball is or how close we started.
So Brownian motion is transient from balls for d ≥ 3. When we still shrink
r ↓ 0, we find out that the single points are polar sets also in dimensions d ≥ 3.
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7.2. Dirichlet boundary value problem and Kakutani’s representa-
tion theorem. Let’s return to the connection between harmonic functions
and stopped (and as we see soon killed) Brownian motion.

We want to show compute u(x) = Ex f(Bτ ) , when G ⊂ Rd is an open, con-
nected bounded domain and x ∈ G is a given point, the stopping time τ is the
first exit time from the domain G and f : Γ → R is a given continuous function
on the boundary of the domain Γ = ∂G. The Kakutani’s representation theo-
rem says that this computation is equivalent with solving the Dirichlet problem
for the Laplace equation, i.e. under some conditions u should be a harmonic
function inside the domain G, which is continuous upto the boundary and
would coinicde with the function f there.

Let’s show first that having a harmonic function w in the classical sense in
G is equivalent with Zt := w(Bt) being a local martingale on the interval [0, τ).

The other direction �w = 0 in G implies that Z is a local martingale
for every starting points x ∈ G follows from the Itō formula. First of all,
when x ∈ G the distance from the boundary is strictly positive and therefore
Px ( τ > 0 ) = 1 by the continuity of Brownian motion. This means that Zt is
well defined on an interval [0, τ).

If we assume that w ∈ C
2(G) and is continuous upto the boundary, we can

apply Itō formula gives that Z is continuous semimartingale on [0, τ) since
Brownian motion is and

dZt =
�

j

wj(Bt) dB
j
t + 1

2
�

j,k

wjk(Bt) d� B
j
, B

k �t

Since the coordinates of Brownian motion are independent, we have that
� B

j
, B

k �t = t[ j = k ] (Ex.). All in all, we obtain

dZt =
�

j

wj(Bt) dB
j
t + 1

2
�

j

wjj(Bt) dt =: dMt + 1
2�w(Bt) dt =: dMt + dAt.

The first term is a continuous local martingale on a random interval [0, τ) and
the latter is of finite variation.

7.2. Lemma. Suppose w ∈ C
2(G). Process Z is a continuous local martingale

on the interval [0, τ) for every starting points x ∈ G if and only if �w(x) = 0
for every x ∈ G.

Proof. The Itō formula implies immediately that Z is a local martingale on
[0, τ) for every starting point x if �w = 0 in G.

Let as now assume that Z is a continuous local martingale for every starting
point x ∈ G. By the above identity we have that in this case At = Zt − Mt

is a continuous local martingale. However, it is also of finite variation, but
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this implies that A is constant and since A0 = 0 almost surely, we have A ≡ 0
almost surely. This in turn implies that Aη = 0 almost surely for every stopping
time η < τ .

We will show Aη = 0 for every stopping time η < τ implies that �w = 0.
Suppose for contrary that �w(x) > 0. Since g ∈ C

2(G), we have that �w is
continuous and hence we may found a positive numbers r > 0 and s > 0 such
that �w(y) ≥ r for every y ∈ Bs(x) ⊂ G. If we take η is the first exit time
from Bs(x), then the continuity of Brownian motion implies that η > 0 and
η < τ . Therefore,

Aη =
ˆ η

0
�w(Bs) ds ≥ ηr

when we start from the point x ∈ U . This mean that assuming �w �= 0 implies
that Aη �= 0 for some stopping time η < τ , and hence if Z is a continuous local
martingale, we have that �w = 0. �

With this lemma and Optional Stopping Theorem we can show the rep-
resentation part of the Kakutani’s representation theorem, namely that every
classical harmonic function with a given Dirichlet value is given by a functional
of Brownian motion.

7.3. Lemma. If a boundary value problem





�w = 0 alueessa G

w = f reunalla Γ

admits a solution w ∈ C
2(G) ∩ C(G), then w(x) = Ex f(Bτ ) for every x ∈ G.

Proof. If �w = 0 in G and w ∈ C
2(G), then the previous lemma implies that

Z is a continuous local martingale on the interval [0, τ). Therefore, we can find
a sequence (τn) of stopping times so that τn ↑ τ and that Z

τn is a uniformly
integrable martingale. This means that by Optional Stopping Theorem

w(x) = Ex Z0 = Ex Z
τn
0 = Ex Z

τn(τ) = Ex w(B(τn)

for every n ∈ N. Since w ∈ C(G) and Bτn ∈ G, we know that |w(B(τn))| ≤
� w �∞ and we can use the Lebesgue dominated convergence theorem to deduce
that

w(x) = Ex lim
n→∞

w(B(τn) .

Since Brownian motion and w are continuous functions and τn ↑ τ < ∞ we
may deduce that

w(x) = Ex w(Bτ )
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Since w = f and Bτ ∈ Γ = ∂G, we may deduce that

w(x) = Ex f(Bτ )

which proves the claim. �

7.4. Remark. We notice that if this representation holds also an a point x ∈ Γ,
then

w(x) = Ex f(Bτ ) = f(x).

As we will soon see, most of the points on the boundary have a property that
the Brownian motion leaves the domain G immediately, i.e.

Px ( τ = 0 ) = 1.

We will call points that satisfy Px ( τ = 0 ) = 1 regular boundary points. So
we will soon see that most of the points are regular boundary points and the
representation formula extends to regular boundary points, since for every such
a point x, we have

w(x) = Ex f(Bτ ) = f(x).

We will next show that the if w(x) := Ex f(Bτ ) and all of the boundary
points are regular, then w is harmonic function, w ∈ C

2(G) ∩ C(G) and w = f

on Γ.
We first show that w ∈ C

2(G). Then we verify that Xt := w(Bt) is a
continuous local martingale on [0, τ) for every starting point x ∈ G. Then the
Lemma 7.2 already shows that �w = 0 in G. As a last step, we show that w

can be continuously extended to the regular points and as we noted it will then
coincide with the boundary data, i.e. w(x) = f(x) for every regular boundary
points.

7.5. Lemma. The function w(x) := Ex f(Bτ ) belongs to C
∞(G).

Proof. Suppose x ∈ G and r > 0 are such that Dr(x) ⊂ G. Let’s denote by ηr

the first exit time from the ball Dr(x) with radius r and center x.
Since B has the strong Markov property, we have

w(x) = Ex f(Bτ ) = Ex E (f(Bτ ) | Fη) = Ex EB(η) f(Bτ ) = Ex w(Bη) .

(the exact details will be left to excercises). Since f is continuous function on
a compact set Γ, it is bounded and therefore, � w �∞ ≤ � f �∞ < ∞ i.e. w is
bounded as well. From this we can deduce (Ex) that u is actually infinitely
differentiable at the point x ∈ G, which means that u ∈ C

∞(G). �

Let’s next deduce the local martingale property for Zt = u(Bt).
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7.6. Lemma. The process Zt = u(Bt) is a continuous local martingale on [0, τ)
for every starting point x ∈ G.

Proof. Since we know that u ∈ C
∞(G) and Brownian motion is continuous, Z

is continuous on interval [0, τ). Let’s denote

Yt = Ex(f(Bτ ) | Ft) .

Since B is a strong Markov process, we have that

[ s < τ ]Ex(f(Bτ ) | Fs) = [ s < τ ]EB(s) f(Bτ ) = [ s < τ ]u(Bs).

or in other words, [ s < τ ]Ys = [ s < τ ]Zs. This implies that for every η < τ the
stopped processes Y

η and Z
η coincide. Since Brownian motion is a continuous

local martingale on [0, τ) we can choose a sequence τn ↑ τ so that τn < τ

for every n. Since f(Bτ ) is integrable, Y is a uniformly integrable martingale
and therfore, Z

τn = Y
τn is uniformly integrable martingale for every n. This,

however, means that Z is a continuous local martingale on [0, τ). �

7.7. Corollary. The function w(x) := Ex f(Bτ ) is harmonic in G.

Proof. This follows from Lemma 7.2 since w ∈ C
2(G) by Lemma 7.5 and Z is a

continuous local martingale for every starting point x ∈ G by Lemma 7.6. �

We will still need to verify that u is continuous upto the boundary. For this
we need to assume that the boundary ∂G is regular, i.e. every point x ∈ ∂G is
a regular point.

7.8. Lemma. Suppose x ∈ ∂G is a regular point, i.e. Px ( τ = 0 ) = 1. Then
w(x) = f(x) and u is continuous at x in the sense that w(xn) → w(x) for
every (xn) ⊂ G, such that xn → x.

Proof. The fact that w(x) = f(x) for regular points was already mentioned
in the Remark 7.4. Let’s verify the continuity along a given sequence. So let
x ∈ Γ = ∂G be a regular point and (xn) ⊂ G be a sequence that convergence
to x, i.e. xn → x. Since for every z ∈ G and every δ > 0 it holds that

u(z) = Ez f(Bτ ) = Ez f(Bτ )[ Bτ ∈ D(x, δ) ] + Ez f(Bτ )[ Bτ /∈ D(x, δ) ]

we can deduce by the continuity of the function f that

u(z) = f(x)Pz ( Bτ ∈ D(x, δ) ) + Ez f(Bτ )[ Bτ /∈ D(x, δ) ] + o(1),

where o(1) vanishes as δ → 0 uniformly with respect to z ∈ G. So given ε > 0,
we can choose δ > 0 so small that

sup
n

|w(xn) − f(x)Pxn ( Bτ ∈ D(x, δ) ) − Exn f(Bτ )[ Bτ /∈ D(x, δ) ] | < ε
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If Pxn ( Bτ ∈ D(x, δ) ) → 1, as xn → x, then we obtain that

lim sup
n→∞

|w(xn) − f(x)| < ε

which implies the continuity since f(x) = w(x) for the regular point x and
since ε > 0 is arbitrary. This limit estimate follows since the boundedness
of the domain G implies that every continuous function on the boundary is
bounded and hence

|Exn f(Bτ )[ Bτ /∈ D(x, δ) ] | ≤ � f �∞Pxn ( Bτ /∈ D(x, δ) ) → 0.

as n → ∞ and thus

|w(xn) − f(x)| ≤ ε + 2� f �∞Pxn ( Bτ /∈ D(x, δ) ) → ε

To finish the proof, we should show that for every δ > 0 it holds that
Pxn ( Bτ ∈ D(x, δ) ) → 1, as n → ∞. This claim is quite convincing since it
says that closer from the boundary point x we start, the first exit place should
be close to point x as well.

This in turn follows from the “intuitively” evident claim that for every t > 0
the probability Pxn ( τ > t ) → 0, as n → ∞. This claim in a way says that
closer we start from the boundary, less time it should take to exit and in the
limit it should not take any time, which seems like the definition of the regular
point. Proving this claim is left to Excercises.

So suppose we know that for every t > 0, we have that Pxn ( τ > t ) → 0, as
n → ∞. Then we can rewrite
Pxn ( Bτ ∈ D(x, δ) ) = Pxn ( τ > t, Bτ ∈ D(x, δ) ) + Pxn ( τ ≤ t, Bτ ∈ D(x, δ) )

= Pxn ( τ ≤ t ) + Pxn ( τ > t, Bτ ∈ D(x, δ) ) − Pxn ( τ ≤ t, Bτ /∈ D(x, δ) ) .

for every t > 0. This means that together with the assumed fact that the
probability Pxn ( τ > t ) → 0, as n → ∞ the claim

lim
n→∞

Pxn ( Bτ ∈ D(x, δ) ) = 1

is equivalent with the claim that for some t > 0 the probabilities

Pxn ( τ ≤ t, Bτ /∈ D(x, δ) )

are arbitrarily small for every large enough large n. When n is large enough,
xn is at most the distance of δ/2 from the point x. If we now “draw” a ball of
radius δ/2 around the point xn it will be (by the triangle inequality) be inside
the ball D(x, δ).

This means that

Pxn ( τ ≤ t, Bτ /∈ D(x, δ) ) ≤ Pxn ( ηn ≤ t )
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where ηn is the first exit time of the Brownian motion from the ball D(xn, δ/2),
since in order to leave from the domaing G outside the ball D(x, δ) for the first
time, it must have left the ball D(xn, δ/2) before that.

Changing the coordinates (so that xn becomes the origin, we see that

Pxn ( ηn ≤ t ) = P0 ( η ≤ t )

where η is the first exit time of the Brownian motion from the ball D(0, δ/2).
This, however, can made arbitrarily small by choosing t > 0 small enough since
Brownian motion is continuous. To see this, we notice that for every tn ↓ 0,
the events An = {η ≤ tn} is a monotonically decreasing and hence

P0 ( η = 0 ) = lim
n→∞

P0 ( η ≤ tn ) .

Since Brownian motion is continuous, the probability on the left is zero. So,
let’s choose t > 0 so small that P0 ( η ≤ t ) < ε which implies that

Pxn ( τ ≤ t, Bτ /∈ D(x, δ) ) ≤ Pxn ( ηn ≤ t ) = P0 ( η ≤ t ) < ε

holds for every large enough n. This finishes the proof. �

We can now combine all these to the following theorem.

7.9. Theorem. Suppose every x ∈ Γ is regular. Then for every continuous
function f on the boundary Γ, the Dirichlet problem has a unique solution
u(x) = Ex f(Bτ ) that is C

2 inside G and continuous upto the boundary.

Proof. Everything else is clear, so we only need to verify that u is continuous
in G. Suppose we have a sequence (xn) ⊂ G that converges to x ∈ Γ. If xn ∈ G

for infinitely many n, then we see that (u(xn)) has a convergencing subsequence
that converges to u(x). Otherwise, all but finitely many xn ∈ Γ. Let ε > 0
and choose a point zn ∈ G such that |xn − zn| < 1/n and |u(xn) − u(zn)| < ε.
By construction zn → x and

|u(xn) − u(x)| ≤ |u(x) − u(zn)| + ε

The previous result shows now that u(zn) → u(x) and so

lim sup
n→∞

|u(xn) − u(x)| ≤ ε

which means that also u(xn) → u(x). �

What kind of points are regular ? We can easily deduce that if a part of the
boundary is flat (i.e. part of some hyperplane), then at least these points are
regular, since 0 is a regular point for Brownian motion on the interval [0, 1]
(Ex). If a point x ∈ Γ is not regular, then Px ( τ = 0 ) < 1. However, the event
{τ = 0} ∈ F0+ and this σ-algebra is quite trivial.
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7.10. Theorem (Blumenthal’s 0-1 law). If A ∈ F0+, then either P ( A ) = 0
or P ( A ) = 1.

Therefore, a point which is not regular satisfies Px ( τ = 0 ) = 0. This sug-
gests that an irregular point should be almost surrounded by interior points.

7.11. Example. If G = D(0̄, 1) \ {0̄} ⊂ R2 is a punctured disc then the point
0̄ is not regular. This is since Brownian motion does not return the point and
it is continuous so it cannot “travel” to the outer boundary in zero time.

7.12. Definition. A point x ∈ Γ satisfies a flat cone condition, if there is
a d − 1-dimensional hyperplane L � x, a d − 1-dimensional ball U � x in
the hyperplane L and a d − 1-dimensional cone V ⊂ L with strictly positive
aperture44, with the tip at point x such that U ∩ V ⊂ G

C .

7.13. Example. If one can find a cone (i.e. d-dimensional cone), that after
truncation by a ball is in G

C , then x satisfies the cone condition, which is
therefore strictly stronger than the flat cone condition.

Moreover, if the boundary is differentiable at x ∈ Γ, then x satisfies (flat)
cone condition. More generally, if the the boundary can be represented as a
graph of a Lipschitz function in some neighborhood of x, then it also satisfies
a (flat) cone condition.

7.14. Example. In two dimensional case (i.e. in the plane) the domain G =
D(0̄, 1) \ γ which is the unit disc with a proper45 line segment γ removed, then
every point in ∂G = ∂D(0̄, 1) ∪ γ satisfies the flat cone condition.

7.15. Remark. Actually, in the two dimensional case and if G is open (like we
are assuming all the time), a stronger regularity result holds, namely, if a point
x ∈ ∂G can be connected with an arc γ ⊂ G

C to another point y ∈ G
C , then

x is regular.

7.16. Example. In dimensions three or higher, the inwardd cusps are too

7.17. Lemma. If x ∈ ∂G satisfies the flat cone condition, then x is a regular
point.

Proof. Since Brownian motion is invariant under rigid motions (i.e. rotations
and dilations), we may assume that x = 0̄ is the origin and the flat cone
C ⊂ {xd = 0}.

44
so it contais interior points

45
i.e. the segment is not a single point
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Define a sequence of stopping times

τn = inf{ t > 1/n : B
d
t = 0 }

which are the times the Brownian motion after some delay 1/n hit the hy-
perplane supporting the flat cone C for the first time. By construction, the
sequence (τn) is decreasing and since in one dimensional case the boundary of
an interval |0, 1] is regular, we have also that τn ↓ 0 for P0-almost surely.

If we denote by X = (B1
, . . . , B

d−1), then (Xτn , 0) ∈ G
C whenever Xτn ∈ C0,

where C0 = C ∩ U is the truncated flat cone. Therfore, if Xτn ∈ C0, we also
have that τ ≤ τn and so

P0 ( τ ≤ τn ) ≥ P0 ( Xτn ∈ C0 )

Moreover, since τn ↓ 0, we have by monotone convergence that

P0 ( τ = 0 ) ≥ lim sup
n→∞

P0 ( Xτn ∈ C0 )

Therefore, if we can show that the right-hand side is strictly positive, the
regularity follows from the Blumenthal 0-1 -law.

This on the other hand follows, if we can show that

P0 ( Xτn ∈ C ) = θ > 0

for every n, since then

P0 ( Xτn ∈ C0 ) = P0 ( Xτn ∈ C, Xτn ∈ U ) = θ − P0 ( Xτn ∈ C, Xτn /∈ U )

and the probability P0 ( Xτn /∈ U ) goes to zero as n → ∞, since X is continuous
and τn ↓ 0 for P0-almost surely.

This last part follows from the independence of B
d and X the fact that C

is a cone. First by independence,

P0 ( Xτn ∈ C ) = E0 g (τn)

where
g(t) = P0 ( Xt ∈ C ) .

Now since Xt ∼ t
1/2

X1 and moreover, since C is a cone, t
1/2

C = C, we notice
that

g(t) = P0
�

X1 ∈ t
1/2

C

�
= P0 ( X1 ∈ C ) = g(1)

so g is a constant function, implying that

P0 ( Xτn ∈ C ) = E0 g (τn) = g(1) = P0 ( X1 ∈ C )

The last probability is strictly positive, since the cone has a positive Lebesgue
measure and X1 is a Gaussian random variable i.e. it shares the null sets with
Lebesgue measure. �


