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5. More on martingales and local martingales

Recall that if (Xt) is an (Ft)-supermartingale, then E Xt ≤ E Xs for t > s

and if (Xt) is a martingale, then E Xt = E Xs for every t > s. This naturally
does not yet imply martingale (nor supermartingale) property.

5.1. Example. Let (Xt) be a continuous, (Ft)-adapted and integrable stochas-
tic process with E Xt = E X0 for every t. This does not mean that it will be a
martingale, since Xt = B

3
t satisfies all these conditions with respect to history

of the Brownian motion. Since x
3 − y

3 = (x − y)3 + 3y(x − y)2 + 3y
2(x − y),

we have for every t > s that

E
�
B

3
t − B

3
s | Fs

�
= 0 + 3BsE B

2
t−s + 0 = 3(t − s)Bs.

Since the right-hand side does not vanish, we don’t have a martingale at hand.
Furthermore, it is neither sub- or supermartingale, since Bs is not always pos-
itive or negative.

However, now that we know about stopping times, we can verify a following
quite remarkable observation which says that if in the previous example we
would have assumed that E Xτ = E X0 for every bounded stopping time τ , the
process X would have been a martingale.

5.2. Lemma. Let (Xt) be (right continuous) adapted with respect to (Ft). Sup-
pose for every s ≥ 0 and for every bounded proper stopping time τ ≥ s we have
that Xτ is integrable and furthermore, we have that E Xτ ≤ E Xs . Then X is
a (right continuous) supermartingale.

Proof. Since t is a bounded proper stopping time ≥ t, we have that Xt is
integrable for every t ≥ 0 and X is adapted, so we only need to show that

E Xt[ A ] ≤ E Xs[ A ]

for every t > s and for every A ∈ Fs. So let’s fix s < t and take arbitrary
A ∈ Fs. Let τ = s[ A

C ] + t[ A ]. Then s ≤ τ ≤ t and moreover, τ is a proper
stopping time, since

[ τ ≤ u ] = [ A ][ s ≤ u < t ] + [ u ≥ t ]

is Fu-measurable for every fixed u. So the assumption gives that

E Xτ ≤ E Xs

but since E Xτ = E Xt[ A ] + E Xs[ A
C ] the claim follows since

E Xt[ A ] = E Xτ − E Xs[ A
C ] ≤ E Xs − E Xs[ A

C ] = E Xs[ A ] .

�
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The Optional Stopping Theorem provides that the converse holds as well
i.e. that if we have a right continuous supermartingale, then E Xτ ≥ E Xη for
every bounded stopping times τ ≤ η.

First we need a result concerning the adjoining infinities (or limit points) to
supermartingales in such a way that we would still have a supermartingale.

5.3. Theorem. If (Xt) is right continuous supermartingale, T = R+ then the
following are equivalent.

i) X
−
t converges in L

1-sense, when t → ∞.
ii) There exists a X∞ ∈ L

1, such that X
−
t ≤ E (X−

∞ | Ft)
iii) The family { X

−
t : t ≥ 0 } is uniformly integrable.

If any of these conditions is satisfied, then X∞ = limt→∞ Xt almost surely.
Moreover, if

sup
t≥0

E |Xt|p < ∞,

hold for p > 1 then all of the above hold and X
−
t → X

−
∞ converges in the space

L
p as well.37

The uniformly integrable family means the following.

5.4. Definition. The family { Xt : t ∈ T } of random variables is uniformly
integrable, if

lim
M→∞

sup
t∈T

E
�
[ |Xt| ≥ M ]|Xt|

�
= 0.

Proof. Let’s consider just couple of points. i) implies ii): Suppose X
−
∞ =

limt X
−
t in L

1, then for every s > t we have

E [ A ]E
�
X

−
∞ − X

−
t | Ft

�
= E [ A ]E

�
(X−

s − X
−
t + X

−
∞ − X

−
s ) | Ft

�

for every A ∈ Ft. Since X is supermartingale and the mapping x �→ x
− is

decreasing and convex, we get by Jensen’s inequality that

X
−
t ≤ (E (Xt | Ft) )− ≤ E

�
X

−
s | Ft

�

and therefore

E [ A ]E
�
X

−
∞ − X

−
t | Ft

�
≤ E (X−

∞ − X
−
s )

for every s and the right-hand side goes to 0 by assumption as s → ∞.
The ii) implies iii): The goal is to show

∀ε > 0 : ∃α > 0: sup
t

βt(α) ≤ ε

37
i.e. there exists a Z ∈ Lp

such that � Xt − Z �p
p := E |Xt − Z|p → 0 as t → ∞
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where βt(α) = E [ At(α) ]X−
t and At(α) = {X

−
t ≥ α}. Now

X
−
t ≤ E

�
X

−
∞ | Ft

�
.

and therefore, for every A ∈ Ft we have

E X
−
t [ A ] ≤ E [ A ]E

�
X

−
∞ | Ft

�
= E X

−
∞[ A ] .

The right-hand side can be estimated by

E X
−
∞[ A ] = E X

−
∞[ A, X

−
∞ > m ] + E X

−
∞[ A, X

−
∞ > m ] ≤ ε/2 + mP ( A )

when we choose m so large, that E X
−
∞[ X

−
∞ > m ] < ε. In particular,

βt(α) ≤ ε + mP ( At(α) ) .

By Markov inequality we get

P ( At(α) ) ≤ E X
−
t

α
≤ E X

−
∞

α
→ 0

as α → ∞, so

lim sup
α→∞

sup
t

βt(α) ≤ ε/2 + lim sup
α→∞

mE X
−
∞

α
≤ ε

and the uniform integrability follows.
The iii) implies i): The uniform integrability gives that there exists an M > 0
such that

sup
t

E X
−
t [ X

−
t ≥ M ] ≤ 1

and therefore,

sup
t

E X
−
t ≤ sup

t
MP

�
X

−
t ≤ M

�
+ sup

t
E X

−
t [ X

−
t ≥ M ] ≤ M + 1 < ∞.

The Theorem 3.28 implies that there exists X∞ ∈ L
1 such that Xt → X∞

almost surely, as t → ∞. Therefore, also X
−
t → X

−
∞ almost surely, since

x �→ x
− is continuous function.

We leave the proof that almost sure convergence together with the uniform
integrability implies the convergence in L

1.
�

5.5. Remark. In the previous theorem, if X is a martingale, we see that iii)
says that { Xt : t ≥ 0 } is uniformly integrable (not just the negative parts).
Furthermore, we see that ii) becomes Xt = E (X∞ | Ft) , so every Xt is a
conditional expectation of a single random variable. We call martingale with
this property uniformly integrable (or UI) and we will call supermartingale with
properties i)-iii) uniformly integrable as well.
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For supermartingales we didn’t get the full uniform integrability, but we have
the following weaker version. Note that if τn = tn for normal time instances
then (tn) satisfies the integrability and the supermartingale assumptions for the
discrete sampled process. With the Optional Stopping Theorem (Theorem 5.7)
we know that any dccreasing sequence (τn) in the closed interval a ≤ τn ≤ b

satisfies rest of the assumptions. But we need this as part of the proof of
Optional Stopping Theorem, so we assume those.

5.6. Lemma. Suppose (Xt) is (right continuous) supermartingale with respect
to to a filtration (Ft) on a closed interval [a, b] where a ≥ −∞ and b ≤ ∞.
Suppose (τn)n∈N is an decreasing sequence of stopping times a ≤ τn ≤ b such
that ∀n ∈ N : Xτn ∈ L

1 and38 ∀n ∈ N, ∀m ≥ n : Xτm ≥ E
�
Xτn | Fτ+

m

�
. Then

{ Xτn : n ∈ N } is uniformly integrable.

Proof. Let’s denote �Xn := Xτ−n and Gn = Fτ+
−n

for every −n ∈ N. Then �Xn is
Gn-supermartingale on −N = {−∞, . . . , −2, −1, 0} since by assumption �Xn is
integrable and adapted to Gn and moreover, for every negative integer m > n

we have
E

�
�Xm | Gn

�
= E

�
Xτ−m | Fτ+

−n

�
≤ Xτ−n = �Xn

The idea is to find a positive, integrable and increasing sequence (An) on
−N such that Yn := �Xn − An is a Gn-martingale on −N.

Then the Theorem 5.3 implies that {Yn}n∈−N is uniformly integrable, since
Yn = E (Y0 | Gn) for every n ∈ −N. Moreover, since E An ≤ E A∞ < ∞
for every n ∈ −N and |An| = An ≥ 0, we have that {An}n∈−N is uniformly
integrable. Since �Xn = Yn + An and sum of two uniformly integrable sequence
is uniformly integrable, the claim follows.

So how to construct the sequence (An) ? Suppose we have already con-
structed An ≥ 0 and we want to find An+1. Since An = �Xn − Yn and since
(�Xn) and (Yn) are Gn-adapted, we know that An is H -measurable, for some
H ⊂ Gn. Since Yn+1 = �Xn+1−An+1 and Yn = E (Yn+1 | Gn) we get an equation

�Xn + An = E
�

�Xn+1 + An+1 | Gn

�

or

(∗) E (An+1 | Gn) = An + E
�

�Xn − �Xn+1 | Gn

�
≥ 0.

If we demand that

(∗∗) An+1 = An + E
�

�Xn − �Xn+1 | Gn

�

38
by N we mean the set N ∪ {∞}
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then since the right-hand side of (∗∗) is Gn-measurable, this choice satisfies the
identity (∗). Moreover, the An+1 ≥ An ≥ 0. If we choose A−∞ = 0, then we
would formally find a suitable sequence by

An = An − A−∞ :=
n−1�

j=−∞
E

�
�Xj − �Xj+1 | Gj

�

which is clearly increasing in n, positive (since all the terms in sum are) and it
is Gn−1-measurable for every n ∈ −N. We still need to verify that these sums
converge and are integrable. If n, N ∈≤ 0 and N < n, then

Bn,N :=
n−1�

j=N

E
�

�Xj − �Xj+1 | Gj

�

is a finite sum and 0 ≤ Bn,N ↑ An as N ↓ −∞. Therefore, by monotone
convergence and by telescoping sum

E An = lim sup
N→−∞

E BN,n = lim sup
N→−∞

E �XN − E �Xn ≤ E �X−∞ − E �X0 < ∞

So for every n ≤ 0 the random variables An are integrable with uniform in-
tegrable upper bound A0. This shows that we could construct the required
sequence (An) and the claim follows. �

Now it’s time for the Optional Stopping Theorem.

5.7. Theorem (Optional Stopping Theorem). Let (Xt) be a right continuous
supermartingale with respect to filtration (Ft) and suppose that there is an
L

1-random variable X∞, such that

∀t ≥ 0: Xt ≥ E (X∞ | Ft) .

a) the family { X
−
ν : ν is a stopping time } is uniformly integrable and

Xτ is integrable for every stopping time τ ,
b) Xτ [ τ = ∞ ] = X∞[ τ = ∞ ] for any stopping time τ

c) If τ ≤ η are stopping times, then Xτ ≥ E (Xη | Fτ+)

If X is a martingale, then there is an equality in c).

5.8. Remark. If (Xt) is a right continuous submartingale with respect to filtra-
tion (Ft) and if there is an L

1-random variable Y such that

∀t ≥ 0: Xt ≤ E (Y | Ft) ,

then the same conclusions for X hold where in d) the inequality is reversed,
i.e. Xτ ≤ E (Xη | Fτ+) .
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Proof. Let’s sketch the main parts of the proof.
Suppose τ and η are simple stopping times i.e. takes only finitely many
values (and potentially value ∞) and assume that τ ≤ η. Then clearly Xη and
Xτ are integrable since for instance

E |Xτ | ≤
�

d

[ τ = d ] E |Xd| < ∞.

The remaining part, namely that Xτ is Fτ = Fτ+-measurable and Xτ ≥
E (Xη | Fτ+) is left to excercises.
τ and η any stopping times. Let’s define

τn := 2−n(�2n
τ� + 1)[ τ < n ] + ∞[ τ ≥ n ]

ηn := 2−n(�2n
η� + 1)[ η < n ] + ∞[ η ≥ n ]

These are simple and proper stopping times. Moreover, τn ↓ τ and ηn ↓ η

almost surely and thus, by right continuity, Xτn → Xτ and Xηn → Xη almost
surely.

By the previous part for simple stopping times, we know that X(τn) is in-
tegrable for every n and E (X(τn+1) | Fτn) ≤ X(τn). Hence we know that by
Lemma 5.6 that {Xτn} is uniformly integrable. Similarly {Xηn} is uniformly
integrable and therefore, we have Xτn → Xτ and Xηn → Xη in L

1-sense as well.
Thus, both Xτ and Xη are integrable, and moreover for every A ∈ Fτ+ = �

Fτn

and therefore, we have

E [ A, τ < ∞ ](Xτn − Xηn) =
�

d∈D
E [ A, τn = d ]E (Xτn − Xηn | Fτn) ≥ 0

for39 every n ∈ N. Since we know that Xηn → Xη in and Xτn → Xτ in L
1, we

can move the limits inside and obtain

E [ A, τ < ∞ ](Xτ − Xη) ≥ 0

for every A ∈ Fτ+ . When τ = ∞, we have η ≥ τ = ∞ and also τn = ηn = ∞
and so Xτ = Xη = X∞. Thus trivially

E [ A, τ = ∞ ](Xτ − Xη) = 0

So we have shown part of a) and c). Part b) is part of the construction.
So only thing remaining is to show the uniform integrability. Since now we

know that Xτ ≥ E (X∞ | Fτ+) , since η = ∞ is a stopping time. Therefore,
like in the proof of Theorem 5.3 we deduce that X

−
τ ≤ E (X−

∞ | Fτ+) . And like

39
the set D is the dyadic rationals, and for more detailed argument you are advised to

look at the proof of the Theorem 4.21
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in the proof of Theorem 5.3 we can now conclude that for every ε > 0 there
exists an m > 0 such that for every α > 0 we have

sup
τ

E X
−
τ [ X

−
τ > α ] ≤ ε + m sup

τ
P

�
X

−
τ > α

�
≤ ε + mE X

−
∞

α

�

5.1. Local martingales. Next we will define the local martingale. Localisa-
tion always refers to some kind of cutting or breaking into small pieces. With
the Optional Stopping Theorem, we can show that stopped martingale is a
martingale. To give meaning to this let us define

X
τ (t) := X(t ∧ τ)

where τ is a stopping time. By inspection, we notice that after time τ this
process stops and stays in the state X(τ). This does not destroy the martingale
property.

5.9. Lemma. Suppose X is right continuous supermartingale with respect to
filtration (Ft). Then the stopped process Y := X

τ is a right continuous super-
martingale with respect to filtration (Ft) suhteen for every bounded stopping
time τ .

Proof. Let s ≥ 0 and η ≥ s be a bounded stopping time. Then Y (η) = X(η∧τ),
and therefore by the Optional Stopping Theorem, E |Y (η)| < ∞. Since X is
a supermartingale we have by the Optional Stopping Theorem, that

E X(η ∧ τ) ≤ E X(s ∧ τ)

or in other words E Yη ≤ E Ys . This, however, by the Lemma 5.2 implies that
Y is a supermartingale. �

Since the martingale property is preserved while stopping the following gen-
eralizes the concept of a martingale.

5.10. Definition. Let (Xt) be a right continuous process and adapted to a
filtration (Ft). We say that X is a local martingale with respect to to filtration
(Ft) if there exists a sequence (τn) of stopping times such that τn ↑ ∞ and
X

τn [ τn > 0 ] is uniformly integrable martingale for every n.

5.11. Remark. In the same way we can define local supermartingales, locally
bounded processes etc.

5.12. Remark. While we are at it let’s generalize martingales to vector processes
by saying that the Rd-valued process is a martingale with respect to to (Ft) if
each of its coordinates are (Ft)-martingales.
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5.13. Example. Every right continuous martingale is a local martingale. Just
take τn = n, since then X

τn is right continuous and uniformly integrable.

We can still define local processes on random time intervals.

5.14. Definition. Let (Xt) be an (Ft)-adapted right continuous process. Let
τ be a (Ft)-stopping time. We will say that X is a local martingale on the
random interval [0, τ) with respect to filtration (Ft) if there exists a sequence
(τn) of stopping times such that τn ↑ τ and X

τn [ τn > 0 ] is uniformly integrable
(Ft)-martingale for every n.

5.2. Hunt processes and Debut Theorem. Let’s return to Feller processes.
We know that Brownian motion is a Feller process and that it is continuous.
We have almost every time assumed the right continuity from the processes at
hand but for Feller processes that is not really needed.

5.15. Theorem. Suppose X is a Feller process. Then it has a càdlàg version
i.e. there is a Feller process X

� that is right continuous and has left limits at
every time instances and X

� is a version40 of X for every starting point x ∈ S.

Proof. We will postpone this proof. �

In addition to this, the Feller processes have a weak continuity from left,
namely the quasi-left continuity.

5.16. Definition. Let M = (Xt, Ft, Px) be a Markov process. We say that X

is quasi-left continuous, if

Px

�
lim

n→∞
Xτn = Xτ , τ < ∞

�
= Px ( τ < ∞ )

for every stopping time τ and every increasing sequence of stopping times (τn)
such that τn ↑ τ , we have for every x ∈ S.

5.17. Theorem. A càdlàg Feller process is quasi-left continuous.

Proof. Suppose first that τ < ∞. Since X has left limits, we can define a
random variable Y = lim Xτn . The goal is to prove that Px ( Y = Xτ ) =
Ex [ Y = Xτ ] = 1 for every x. If we can show that Ex u(Y, Xτ ) = Ex u(Y, Y )
for every bounded and measurable u : S×S → R, the claim follows by choosing
u(x, y) = [ x = y ].

Since in S we can approximate indicator functions of rectangles by functions
of form f(x)g(x) where f and g are C∞(S)-functions, the claim follows by π-λ
Theorem, if we can show that Ex f(Y )g(Xτ ) = Ex f(Y )g(Y ) .

40
so we have Px ( X �

t = Xt ) = 1 for every t and for every x ∈ S
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Let t > 0 and let’s rewrite Ex f(Y )g(Xτ ) as

Ex f(Y )g(Xτ ) = Ex

�
lim

n→∞
f(Xτn)g(Xτ )

�

= lim
n→∞

Ex f(Xτn)(g(Xτn+t) + g(Xτ ) − g(Xτn+t)) .

(∗)

The first term on the right of (∗) can be dealt with the strong Markov property
at τn:

Ex f(Xτn)g(Xτn+t) = Ex f(Xτn)EXτn
g(Xt) = Ex f(Xτn)Ptg(Xτn) .

Since g ∈ C∞(S) the Feller property shows that Ptg ∈ C∞(S) and so we can
compute the limit

lim
n→∞

Ex f(Xτn)g(Xτn+t) = lim
n→∞

Ex f(Xτn)Ptg(Xτn) = Ex f(Y )Ptg(Y ) .

Furthermore, if we let t ↓ 0, the Feller property says that t �→ Ptg is continuous
in the uniform norm, so we have that

lim
t↓0

lim
n→∞

Ex f(Xτn)g(Xτn+t) = Ex f(Y )g(Y ) .

So we only have to show that the second term of (∗) vanishes at the limit, i.e.
we need that

(∗∗) lim
t↓0

lim
n→∞

Ex f(Xτn)(g(Xτ ) − g(Xτn+t)) = 0.

We can estimate that

Ex |f(Xτn)(g(Xτ ) − g(Xτn+t))| ≤ � f �∞Ex sup
s∈(τn−τ,t)

|g(Xτ ) − g(Xτ+s)|

By dominated convergence and the fact that τn → τ we get

lim sup
n→∞

Ex |f(Xτn)(g(Xτ ) − g(Xτn+t))| � Ex sup
s∈[0,t)

|g(Xτ ) − g(Xτ+s)|

Since X is right continuous and g is continuous,

lim
t↓0

sup
s∈[0,t)

|g(Xτ ) − g(Xτ+s)| = 0

almost surely. Thus, we get claimed (∗∗) by dominated convergence. �

The following theorem provides a lot of stopping times we need when analysing
the stochastic processes on domains, namely the hitting and the debut times.

5.18. Definition. Let X be a stochastic process with state space (S, B(S)).
Let G ∈ B(S). We define the first hitting time τG to a set G as

τG := inf{ t > 0 : X(t) ∈ G }

and the first entrance time DG into the set G as

DG := inf{ t ≥ 0 : X(t) ∈ G }.
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By a first exit time from a set G we mean the first hitting hitting time to G
C .

5.19. Remark. These time are clearly connected but might be different. If
X0 /∈ G, then τG = DG. Moreover, in general

{DG ≤ t} = {X0 ∈ G} ∪ {τG ≤ t, X0 /∈ G}

5.20. Theorem (Debut Theorem). Suppose (Xt) is right continuous and quasi-
left continuous strong Markov process with respect to to filtration (Ft). Suppose
S ⊂ Rd is locally compact Polish space.

a) When G is an open set, then τG and DG are (Ft+)-stopping times.
b) When G is a closed set, then τG and DG are (Ft+)-stopping times.
c) When G ⊂ S is a Borel set, then τG and DG are are ( �Ft)-stopping

times.

Proof. a) G is open. We will first show τG is a stopping time and deduce DG

from this.
Suppose τG < t. Then by definition of τG there exists an s < t such that

Xs ∈ G. Since G is open and X is right continuous, there is a u ∈ (s, t), such
that Xv ∈ G for every v ∈ [s, u]. In particular, there is a rational r ∈ [s, u] ⊂
[0, t) such that Xr ∈ G.

On the other hand, if there is a rational r < t such that Xr ∈ G, we have
that τG < t.

Therefore, we have deduced that

{τG < t} =
�

r∈Q
{r < t, Xr ∈ G} ∈ F

0
t ⊂ Ft

which shows that τG is (Ft+)-stopping time. Here (F 0
t ) is the history of X

and F 0
t ⊂ Ft since X is adapted to Ft. From this we deduce that the first

entrance time DG is also a stopping time, since

{DG ≤ t} = {X0 ∈ G} ∪ {X0 /∈ G, τG ≤ t} ∈ F
0
t+ ⊂ Ft+ .

b) G is closed.
Since S is a Polish space, we can find a decreasing sequence of open sets Un

such that
∀n : Un ⊃ Un+1 ⊃ G.

and that
G =

�

n

Un =
�

n

Un.

By a) the sequence (τ �
n) := (τUn) are stopping times. Furthermore, the sequence

of stopping times τ
�
n := τUn satisfies

τ
�
1 ≤ τ

�
2 ≤ . . . τ

�
n ≤ · · · ≤ τG
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since if τ
�
n(ω) = t, then Xs(ω) /∈ Un for every s < t and so Xs(ω) /∈ Un+1 for

every s < t which implies that τ
�
n+1(ω) ≥ t = τ

�
n(ω). In the same way we can

deduce that τG ≥ τ
�
n for every n.

Thus, we can define a limit stopping time ν = limn τ
�
n which is satisfies

ν ≤ τG. By quasi-left continuity, we know that

Xν = lim
n→∞

Xτ �
n

from which we can deduce that Xν ∈ G (as we soon see)
Therefore, by the definition of τG we have ν ≥ τG if we assume that X0 /∈ G

because if X0 ∈ G then by construction ν = 0 but it might be that τG > 0 (we
will see this in excercises later on). But comparing the above to DG we notice
that without assuming X0 /∈ G we have ν = DG.

However, since ν is a stopping time, we obtain that DG is a (Ft+)-stopping
time but also (F 0

t+)-stopping time as well. To deduce that τG is a stopping time,
we can continue as follows. If τG = 0, then DG = 0 and so {τG = 0} ∈ F0+ .
This means that if for every t > 0 and every n ∈ N+ we have

{1/n < τG ≤ t} ∈ Ft+

we are done. For �Xs := Xs+1/n we have that �X0 /∈ G and so the first hitting
time �τG and first entrance time �DG for �X coincide i.e. �τG = �DG = τG − 1/n.
This means that

{0 < �τG ≤ t − 1/n} ∈ σ
�

{ �Xs : s ∈ [0, t − 1/n] } ⊂ F
0
t+ ⊂ Ft+

but since {1/n < τG ≤ t} = {0 < �τG ≤ t − 1/n} we are done.
�

We will later on deal processes that generalize the Feller processes a bit,
namely they satisfy the properties of Theorem 5.15 and Theorem 5.17. So we
end this chapter with a preliminary definition of the Hunt processes.

5.21. Preliminary definition. A Markov process M = (Xt, Ft, Px, Pt,x) with
a transition function Pt,x, a compact state space S

† = S ∪ {†} and a completed
filtration Ft = �Ft is called a Hunt process, if and only if

i) it is right continuous,
ii) it has the strong Markov property

iii) and it is quasi-left continuous

Therefore, every Feller process is a Hunt process (by Theorem 5.17). More-
over, we could prove that almost surely every path of a Hunt process has left
limits, i.e. almost every path is càdlàg.
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5.3. Some examples.

5.22. Example. We have said a couple of times that the Brownian motion
lives in the whole space. Let’s put some meat on it. This could be setteled by
answering the following questions:

Q1. Let x0, x ∈ Rd. Will Brownian motion always hit the point x when
B0 = x0 ?

Q2. Let x0, x ∈ Rd and r > 0. Will Brownian motion always hit the the
ball of radius r and centered at the point x when B0 = x0 ?

Q3. Let x0 ∈ Rd, and r > 0. Will Brownian motion always hit the comple-
ment of the ball of radius r and centered at the origin ?

We see that Q1 > Q2 > Q3, if we interpret this to mean: “Q1 > Q2 if a
positive answer to Q1 answers Q2 positively.” We can rephrase all of these as
the question of finiteness of the hitting time τG.

Q1. Let x0, x ∈ Rd. Is Px0

�
τ{x} < ∞

�
= 1 ?

Q2. Let x0, x ∈ Rd and r > 0. Is Px0

�
τBr(x) < ∞

�
= 1 ?

Q3. Let x0 ∈ Rd and r > 0. Is Px0

�
τBr(0)C < ∞

�
= 1 ?

Furthermore, in 1-dimensional case at least Q1 and Q2 are the same since
Brownian motion is continuous.

In higher dimensional case the questions are not necessarily the same. So
let’s consider the Q3 and start from a point x ∈ Br(0). Let’s denote the
stopping time simply by τ . If we draw a box [−r, r]d around the ball and call
the hitting time to the complement of this box by η, we deduce

Px ( η < ∞ ) ≤ Px ( τ < ∞ ) .

Moreover, since hitting the boundary of the box means hitting one of the edges
we have

Px ( η < ∞ ) = Px

�
η

(1)
< ∞

�
+ Px

�
η

(1) = ∞, η
(2)

< ∞
�

+ . . .

≥ Px

�
η

(1)
< ∞

�
.

Therefore, if the question Q3 can be answered positively in 1-dimensional case,
we have a positive answer to the question Q3 in every dimensions.

Let’s show that Q3 in 1-dimensions hold by showing that even

Ex η
(1) = lim

n→∞
Ex (η(1) ∧ n) < ∞.

And again, let’s just denote this stopping time as τ . For this we will use
the Optional Stopping Theorem for a uniformly integrable martingale. We
know couple of martingales by now, namely the Brownian motion Bt and the
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martingale Xt = B
2
t − t. Neither of these are uniformly integrable, but by

stopping we can produce uniformly integrable martingales from these.
First we notice that

Zt = Xt∧n

is a martingale and since Zt = E (Zn | Ft) = E (Z∞ | Ft) it is uniformly
integrable by Theorem 5.3. Therefore, Zτ is integrable and also

Ex Z0 = Ex Zτ

by the Optional Stopping Theorem. Now Z0 = X0 = B
2
0 , so

Ex Z0 = Ex B
2
0 = x

2
.

The right-hand side is

Ex Z0 = Ex (B2
τ∧n − (τ ∧ n))

so we obtain an equation

Ex (τ ∧ n) = Ex B
2
τ∧n − x

2

for every n. If the right-hand side is uniformly bounded with respect to n, then
we obtain Px ( τ < ∞ ) = 1, since

nPx ( τ = ∞ ) = Ex [ τ = ∞ ](τ ∧ n) ≤ Ex (τ ∧ n) .

However, this is seen easily, since τ ∧ n ≤ τ . Therefore, |Bτ∧n| ≤ r, since τ is
the first time the absolute value of Brownian motion reaches the level r. This,
however, means that the sequence (B2

τ∧n) has an integrable upper bound r
2.

So, we first obtain that

Px ( τ = ∞ ) ≤ n
−1Ex (τ ∧ n) ≤ n

−1(r2 − x
2) → 0

as n → ∞ and so we deduce Px ( τ = ∞ ) = 0. Furthermore, this means that
τ ∧ n → τ < ∞ almost surely and hence B

2
τ∧n → B

2
τ = r

2 almost surely by the
continuity of Brownian motion and by the property that B(τG) ∈ G for every
Borel set G.

Note, that the finiteness of τ is needed here, since B∞ cannot be defined.
But once we have deduced the finiteness, we get the almost sure convergence
and since we had the integrable upper bound, we can use the dominated con-
vergence and deduce

Ex τ = lim
n→∞

Ex (τ ∧ n) = Ex B
2
τ − x

2 = r
2 − x

2

This means that we have settled the question Q3 in every dimension.
Let’s still consider Q1 in 1-dimensional case (the other can be dealt with the

stochastic integration). So let’s do the same with procedure with Brownian
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motion B instead of X, but this time with the stopping time τ−r ∧ τr where
τa is the first time when Bt = a.

This (as in excercises) leads to an identity

x = Ex B0 = Ex Bτr∧τ−r = rPx ( τr < τ−r ) − rPx ( τ−r < τr )

for every x ∈ (−r, r). Since Brownian motion is continuous we have

Px ( τ−r < τr ) + Px ( τ−r > τr ) = 1 − Px ( τ−r = τr ) = 1 − Px ( τ−r = τr = ∞ )

and if τr = τ−r = ∞, then τ = ∞ which we know to to an almost impossible.
So

Px ( τ−r < τr ) + Px ( τ−r > τr ) = 1
and we obtain two linear equations for the two probabilities and thus, we can
solve it leading to

Px ( τ−r < τr ) = x + r

2r
, and Px ( τ−r > τr ) = r − x

2r
.

If we change the coordinates so that x becomes rN := N − (r − x), the upper
limit r becomes N and therefore, −r becomes −N then we get that

Px ( τr < τ−rN ) = PN−(r−x) ( τN < τ−N ) = 2N − (r − x)
2N

→ 1

as N → ∞. We notice that τ−rN ↑ ∞, since they form an increasing sequence
and if it has a finite limit, then Brownian motion would reach −∞ at bounded
time which is not possible by continuity. Therefore, we get from the monotone
convergence that

Px ( τr < ∞ ) = lim
N→∞

Px ( τr < τ−rN ) = 1.

However, in this case the expectation of τr is infinite, since we saw above that
τr ∧ τ−rN ↑ τr and so

Ex τr = lim
N→∞

Ex τr ∧ τ−rN = lim
N→∞

EN−(r−x) (τN ∧ τ−N)

Since τN ∧ τ−N is the first exit time from the interval (−N, N) i.e. the Q3, we
can compute the expectation on the right and it is

EN−(r−x) (τN ∧ τ−N) = N
2 − (N − (r − x))2 = 2N(r − x) − (r − x)2 → ∞

as N → ∞.


