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4. Feller processes and strong Markov processes

4.1. Feller processes. Let’s return to Brownian motion and its properties.
We already know that it is a Markov process, and we have considered its
transition probability operators (P (B)

t ). These happen to be very nice operators
since they preserve continuous functions and we will give a name for the Markov
processes that posess this property.

These Markov processes are going to be called Feller processes and Brownian
motion (again) is one of those.

In the sequel we will need a function space, that consists of those scalar
valued functions on the state space that are continuous and that vanish at
infinity. We will denote this set by C∞(S). In order to discuss about the
infinity 27, we will require from this point on that the state space S is compact
or at least locally compact. Later on this S

† will be this compact state space.
So we define C∞(S) = { f ∈ C(S†) : f(†) = 0 }.

4.1. Definition. Suppose that S is compact or locally compact Polish space.28

A semigroup29 (Tt) has a Feller property, if Ttf ∈ C∞(S) for every f ∈ C∞(S)
and in addition, it satisfies,

lim
t→0

� Ttf − f �∞ = 0

for every f ∈ C∞(S). A Markov process (Xt) is called a Feller process, if its
transition probability operators have a Feller property.

4.2. Remark. Note that the condition on the state space limits the S as a subset
of Rd somewhat. Since compact is locally compact, every open subset of Rd

is still fine as well as well as every closed subset of Rd. However, this does
leave out some of the Borel sets already, since only sets that are countable
intersections of open sets satisfy the assumption of being a Polish space in the
relative topology and the subsets that are locally compact in Rd are precisely
intersections of an open and a closed set.30

Therefore, we can read that the assumption we made for the state space is
that as a subset of Rd it must be an intersection of an open and a closed set.

27
We will interpret infinity to mean a one point compactification †. If the state space is

compact, we add an isolated point
28

i.e. it is separable and has a complete metric

29
recall this means that we assume that T0 = I and TtTs = Tt+s for every s, t ≥ 0 and

that 0 ≤ u ≤ v implies that 0 ≤ Ttu ≤ Ttv for bounded measurable functions

30
James Dugunji: Topology, Theorem 6.3. page 239
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We have nearly shown already that Brownian motion is a Feller process,
since we know that P

(B)
t maps the space31

L
∞(S) to Cb(S). We will still need

to verify that P
(B)
t f vanishes at infinity as long as f ∈ C∞(S).

4.3. Lemma. Brownian motion is a Feller process.

Proof. Let f ∈ C∞(Rd) and ε > 0. We know that P
(B)
t f that is even C

∞(Rd)-
function. So we only need to show that

P
(B)
t f(x) =

ˆ
Rd

pt(x, y)f(y) dy

häviää, kun |x| → ∞. Since f ∈ C∞(Rd), we can choose R0 > 0 in such a way
that [ B

C
R ]f ≤ ε for every R > R0. Therefore,

|P (B)
t f(x)| ≤

ˆ
Rd

pt(x, y)[ |y| < R ]f(y) dy + ε

for every R > R0 and every x ∈ Rd. When |x| ≥ 2R, we can estimate that 32,
pt(x, y) � e

−R2/2t, and so

sup
|x|≥2R

|P (B)
t f(x)| ≤ cR

d� f �∞e
−R2/2t + ε

The claim follows from this since we may choose large enough R > R0, such
that cR

d� f �∞e
−R2/2t ≤ ε. By the definition of the limit

lim
|x|→∞

P
(B)
t f(x) = 0

or in other words P
(B)
t f ∈ C∞(Rd). �

If we are given a submarkovian semigroup (Tt) with Feller property, we can
define a transition function (Pt,x) so that

Ttf(x) =
ˆ

S

f(y)Pt,x( dy)

for every f ∈ C∞(S). This means that for every Feller semigroup there exists
a corresponding Markov process !

4.4. Lemma. For every submarkovian semigroup (Tt) with Feller property,
there exists a unique transition function (Pt,x) such that

Ttf(x) =
ˆ

S

f(y)Pt,x( dy)

for every f ∈ C∞(S) and every x ∈ S.
31

This should be read as the bounded measurable functions, even though this is not

entirely correct

32
usually while estimating we are not interested in the actual constants so we will be using

the notation � to describe that the use of implicit constants
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Proof. We notice that for every x ∈ S and for every t ≥ 0 the map f �→ Ttf(x)
is a positive linear functional on C∞(S). Since S is a locally compact, the Riesz
Representation Theorem says that it corresponds to unique measure, namely

Ttf(x) =
ˆ

S

f(y)Pt,x( dy)

for every f ∈ C∞(S). We next verify that (Pt,x) is a transition function. First
of all, since ˆ

S

f(y)P0,x( dy) = T0f(x) = f(x)

for every f ∈ C∞(S), then if U is a finite intersection of balls33 and it is a
relatively compact set (let’s denote the family of these as C ), we can find a
monotone sequence fn ↑ [U ] of C∞(S)-functions (why? excercise), and so by
the monotone convergence theorem

P0,x(U) = lim
n→∞

ˆ
S

fn(y)P0,x( dy) = lim
n→∞

fn(x) = [ x ∈ U ]

Now the set G1 of U ’s for which

P0,x(U) = [ x ∈ U ]

holds forms a Dynkin system, and since finite intersections of balls is a π-
system, the G1 = S = B(S). Also, we notice that since x �→ Ttf(x) is
continuous, it is Borel measurable for every f . Again, this means that

x �→ Pt,x(U) = lim
n→∞

Ttfn(x)

is measurable for every U ∈ C . Denoting by G2 the sets for which the measur-
ability holds, we obtain a Dynkin system and Dynkin’s π-λ again gives that
G2 = B(S). Last thing to check is the Chapman–Kolmogorov equation. Again
we have for every f ∈ C∞(S) thatˆ

S

Pt+s,x( dy)f(y) = Tt+sf(x) = TtTsf(x) =
ˆ

S

Pt,x( dy)Tsf(y)

=
ˆ

S

Pt,x( dy)
ˆ

S

Ps,y( dz)f(z)

The monotone convergence theorem with [ U ] for U ∈ C gives then

Pt+s,x(U) =
ˆ

S

Pt,x( dy)Ps,y(U)

and the standard π-λ techinque proves the claim. �

33
by a ball we mean a set Vx(r) = { y : d(x, y) < r }
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4.2. Stopping time. The one of the first goals we have is to show the Kaku-
tani’s result and because of that we want to compute the expectation

u(x) = Ex f(B(τ)) ,

where τ is the first exit time of Brownian motion from the domain G. So let’s
now define the concept of stopping time, which generalizes the exit time, as we
will see later. The following discrete time definition sheds light on the more
general definition.

4.5. Preliminary definition. When T = N and S is countable, the random
variable τ : Ω → T is a stopping time with respect to the filtration (Fn), if

{τ = n} ∈ Fn

for every n ∈ N.

This generealizes the concept of absorption time for Markov chains, which
is the first time a chain enters an absorbing state in which case the chain gets
stuck (gets absorbed). This is a random time which we can say that if it has
happened at the given time or not.

So in general stopping time means that we are waiting for some phenomenon
to happen and we can think that there is an apparatus that will indicate this,
say, by going from waiting state to stopped state. If we know the whole history
at the current time, we can with certainty say, if the apparatus is still in a
waiting state or in a stopped state. This is what the condition {τ = n} ∈ Fn

is describing.
For the continuous time case the border between the presetn and the past is

somewhat vague, so we have no reason to assume that {τ = t} would not be a
null event34.

We notice, however, that for the discrete time case τ is a stopping time if
and only if {τ ≤ n} ∈ Fn for every n ∈ N (Excercise).

This generalizes now with ease and therefore

4.6. Definition. Let (Ft) be a filtration. We say that a random variable
τ : Ω → T is a stopping time with respect to the filtration (Ft), if

{τ ≤ t} ∈ Ft

for every t ∈ T . We will also call it (Ft)-stopping time.

Before listing properties of stopping times we need the concept of right con-
tinuous filtration.

34
i.e. an almost impossible event
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4.7. Definition. Let (Ft) be a filtration. We denote

Ft+ := σ
�

s>t

Fs.

In the sequel we will call (Ft)-stopping times as proper stopping times and
(Ft+)-stopping times shortly as stopping times. We also say that (Ft) is right
continuous, if for every t ≥ 0 it holds that Ft = Ft+ .

Note that every proper stopping time is a stopping time and if the filtration
is right continuous these concepts are the same.

4.8. Remark. If (Ft) is a filtration, then the filtration (F +
t ) is right continuous.

(Excercise).

Now we list some properties (and leave the proofs to excercises) of stopping
times (and proper stopping times). Let’s explicitly write out the filtration so
that one can see what hold for proper stopping times and what just for the
stopping times.

4.9. Example. Let (τn) be a sequence of (Ft)-stopping times (i.e. proper
stopping times). Then the following hold.35

(1) Suppose τ = t is a constant random variable. Then τ is a (Ft)-stopping
time.

(2) τ1 ∧ τ2 is a (Ft)-stopping time.
(3) τ1 ∨ τ2 is a (Ft)-stopping time.
(4) τ1 + τ2 is a (Ft)-stopping time.
(5) τ := sup τn is a (Ft)-stopping time.
(6) τ1 is also a (Ft+)-stopping time.
(7) τ := inf τn is a (Ft+)-stopping time.
(8) τ := lim sup τn is a (Ft+)-stopping time.
(9) τ := lim inf τn is a (Ft+)-stopping time.

(10) if the limit τ := lim τn exists, then it is a (Ft+)-stopping time.

4.10. Remark. We notice that for right continuous (Ft), all the above are
(proper) stopping times. This is the reason that we will usually assume that
the filtrations are right continuous, but do we know, for instance, that Brownian
motion is Markov process and a martingale with respect to the right continuous
history.

It is good to note how the stopping times and proper stopping times differ.

35
We denote x ∧ y := min(x, y) and x ∨ y := max(x, y).
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4.11. Lemma. A random variable τ is a (Ft+)-stopping time if and only if for
every t > 0 it holds that {τ < t} ∈ Ft.

Proof. Let’s leave this to excercises. �

The right continuity of the filtration is more or less about null sets i.e. about
the sets whose probability or a measure is zero. Since these are the obstacles,
we can bypass them by just adding the null sets to the filtration from the start !

4.12. Definition. Let µ be a probability measure on a measurable space
(Ω, F ). We will denote the completed σ-algebra

G
µ := σ (G , Nµ)

which is obtained from a given σ-algebra G by adding the µ-null sets Nµ to it.
The completed σ-algebra is

�G := σ

�
�

µ

G
µ

�

.

Let’s list (without proofs), few things connected with completions:

4.13. Proposition. Let (Ft) be a filtration. Then ( �Ft) and (F µ
t ) for every µ

are right continuous.

Proof. Omitted. I will add this later to Appendices. �

4.3. Strong Markov property for Feller processes. Now we can finally in-
troduce the Markov property that really separates the discrete and continuous
time cases from each other. In the discrete case every Markov chain posesses
the strong Markov property, but for the continuous case this is no longer true
in general. But, as always, Brownian motion has this property as well.

In a discrete time case with countable state space, i.e. when a Markov
process (Xn) is a Markov chain and τ is a stopping time we can easily describe
the history Hτ at the stopping time τ by defining

Hτ :=
�

n,(ij)
{τ = n, X0 = i0, . . . , Xn = in}

which is the family of all the paths of the chain that end at the stopping time
τ given τ = n. Again, this is cannot be generalized immediately, but we notice
that we can express this σ-algebra in another way:

Hτ = { A : {A ja τ ≤ n} ∈ Hn for every n ∈ N }.

This formulation for the history at stopping time τ can now be generalized so
we define
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4.14. Definition. Let (Ft) be a filtration and let τ be a (Ft)-stopping time.
Then the σ-algebra Fτ at the stopping time τ is the family of those events
A ∈ F that

Fτ = { A ∈ F : ∀t ∈ T : {A, τ ≤ t} ∈ Ft }.

Analogously we define

Fτ+ = { A ∈ F : ∀t ∈ T : {A, τ ≤ t} ∈ Ft+ }.

kun τ on (Ft+)-stopping time.

Now let’s list few simple properties of σ-algebras at stopping times.

4.15. Example. The families Fτ and Fτ+ have the following basic properties.
(1) Both Fτ and Fτ+ are σ-algebras.
(2) We have

Fτ+ = { A ∈ F : ∀t ∈ T : {A, τ < t} ∈ Ft }.

(3) If (Ft) is right continuous, then Fτ = Fτ+ for every stopping time τ .
(4) If τ = t, then Fτ = Ft and Fτ+ = Ft+ .
(5) If τ is a (proper) stopping time, then τ is Fτ+-measurable.
(6) If τ1, τ2 are (proper) stopping times and τ1 ≤ τ2, then Fτ+

1
⊂ Fτ+

2
.

(7) If τn is a decreasing sequence of stopping times and τ = limn τn, then

Fτ+ = σ

∞�

n=1
Fτ+

n
.

If in addition, every τn is propert stopping time, then we have

Fτ+ = σ

∞�

n=1
Fτn

Now we can define the strong Markov property.

4.16. Definition. A stochastic process (Xt) has a strong Markov property with
respect to filtration (Ft), if for every time instance t < ∞, for every x ∈ S and
for every A ∈ S it holds that

[ τ < ∞ ]Px ( Xt+τ ∈ A | Fτ ) = [ τ < ∞ ]Px ( Xt+τ ∈ A | Xτ ) a.s.(4.17)

The time stationary strong Markov property means that

[ τ < ∞ ]P ( Xt+τ ∈ A | Fτ ) = [ τ < ∞ ]PXτ ( Xt ∈ A ) a.s.(4.18)

4.19. Remark. As with the Markov property, we will only be treating the time
stationary case so we will omit saying time stationary in the sequel.
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We will now show that the Brownian motion has the strong Markov property.
Actually, we show much more, namely that (right continuous) Feller processes
have strong Markov property.

4.20. Remark. Recall that S is locally compact Polish space and S
† is the one-

point compactification of S. If S is is compact, then S
† = S ∪ {†} where †

is an isolated point. Thus, C∞(S) = { f ∈ C(S†) : f(†) = 0 } is really just
Cb(S). When S is not compact, then f ∈ C(S†) means that f = f(†) + g with
g ∈ C∞(S).

4.21. Theorem. Let (Xt) be a right continuous Feller process. Then for every
(Ft+)-stopping time τ and for every t ≥ 0

[ τ < ∞ ]Ex(f(Xτ+t) | Fτ+) = [ τ < ∞ ]P (X)
t f(Xτ ) a.s.

for every f ∈ C(S†).

Proof. Let us define τn := 2−n(�2n
τ� + 1). This implies that τn ↓ τ and

moreover, τn is a proper stopping time for every n, since

[ τn ≤ t ] =
�

k+1≤2nt

[ τn2n = k + 1 ] =
�

k+1≤2nt

[ k ≤ τ2n
< k + 1 ]

is Ft-measurable. Therefore,

Fτ+ = σ

∞�

n=1
Fτn .

Furthermore, we know that for each fixed n ∈ N, the random variable τn only
takes countable many values. Actually, we can say that {∀n : τn ∈ D} = {τ <

∞} where D = { 2−n
k : n ∈ N, k ∈ Z } is the countable set of dyadic rational

numbers. In other words, we can write

[ A, τ < ∞ ] =
�

d∈D
[ A, τn = d ].

If we combine these two properties, we can conclude that A ∈ Fτ+ if and
only if A ∩ {τn = d} ∈ Fd for every d ∈ D and for every n ∈ N.

Therefore,

Ex f(Xτn+t)[ A, τ < ∞ ] =
�

d∈D
Ex f(Xτn+t)[ A, τn = d ]

=
�

d∈D
Ex Ex(f(Xd+t) | Fd) [ A, τn = d ]

=
�

d∈D
Ex P

(X)
t f(Xd)[ A, τn = d ]
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where the last identity is the usual Markov property. By going backwards, we
can continue and we get rid of the sum

Ex f(Xτn+t)[ A, τ < ∞ ] =
�

d∈D
Ex P

(X)
t f(Xd)[ A, τn = d ]

=
�

d∈D
Ex P

(X)
t f(Xτn)[ A, τn = d ]

= Ex P
(X)
t f(Xτn)[ A, τ < ∞ ] .

We are almost done now, since let’s assume in addition36 that f ∈ C∞(S).
Then by Feller property P

(X)
t f ∈ C∞(S) for every t < ∞. Letting n → ∞ and

using the Lebesgue dominated convergence theorem, we first deduce that

Ex lim
n→∞

f(Xτn+t)[ A, τ < ∞ ] = Ex lim
n→∞

P
(X)
t f(Xτn)[ A, τ < ∞ ] .

Since f and P
(X)
t f are continuous, we get

Ex f( lim
n→∞

Xτn+t)[ A, τ < ∞ ] = Ex P
(X)
t f( lim

n→∞
Xτn)[ A, τ < ∞ ]

and by right continuity of the paths of X and the fact that τn ↓ τ , we obtain

Ex f(Xτ+t)[ A, τ < ∞ ] = Ex P
(X)
t f(Xτ )[ A, τ < ∞ ]

which is precisely what we wanted to show.
In the general case when f ∈ C(S†) the function f0(x) = f(x) − f(†) is in

C∞(S). Thus,

[ τ < ∞ ](Ex(f(Xτ+t) − f(†) | Fτ+) ) = [ τ < ∞ ](P (X)
t f(Xτ ) − f(†)) a.s.

for every f ∈ C(S†). Since the conditional expectation of a constant is the
same constant, the claim follows. �

4.22. Remark. Note that if we assume that always X∞(ω) = †, then

[ τ = ∞ ]Ex(f(Xτ+t) | Fτ+) = [ τ = ∞ ]f(†) = [ τ = ∞ ]P (X)
t f(τ).

Thus, if we assume that at infinity X is in the state †, we can express the
strong Markov property without always stating that τ < ∞.

36
if S is compact, this is no addition at all, this is only extra information for local compact

case


