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3. Basic things from Markov processes and martingales

We will now start generalising the Brownian motion to a larger class of
processes that can be restricted to live inside of given domain. For this purpose
we will introduce first the Markov processes. We will be refining the defintion
and properties of Markov processes more refined ways later on, but let’s start
with a simpler terms first (as always).

3.1. Markov process. First we define the Markov property.
If the set of times T = N and S is countable, then the Markov process is a

Markov chain. In this case we can define the Markov property in a form

P ( Xn+m ∈ A | Hn ) =
�

j∈A

P ( Xn+m = j | Hn )

=
�

j∈A

P ( Xn+m = j | Xn ) = P ( Xn+m ∈ A | Xn )

for every A ⊂ S. Here Hn = σ({ Xm : m ≤ n }) is the history16 of the
process X at time n. We will need a general concept of that captures the
essential part of the history. This property is that the history increases with
time. Everything that is history-like will be called filtration.

3.1. Definition. A family (Ft; t ∈ T ) indexed by time is a filtration, if Ft ⊂ F

is a sub-σ-algebra for every t ∈ T and Fs ⊂ Ft when ever s ≤ t. If there is no
confusion of the set of timest T , we will denote a filtration by (Ft).

Now we can define the Markov property in general.

3.2. Definition. A stochastic process (Xt) has a Markov property with respect
to a filtration (Ft), if for every time instances t ≥ s and every A ∈ S we have

P ( Xt ∈ A | Fs ) = P ( Xt ∈ A | Xs ) a.s.(3.3)

During this course we will almost explicitly be considering the so called time
stationary Markov processes, so let’s define that.

3.4. Definition. A stochastic processes (Xt) has a time stationary Markov
property with respect to a filtration (Ft) if for every time instances t ≥ s, for
every x ∈ S and for every A ∈ S we have

Px ( Xt ∈ A | Fs ) = PXs ( Xt−s ∈ A ) a.s.(3.5)

16
loosely, everything we can talk about the process X before and at time n
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3.6. Remark. The notation Px(A) should be read as P ( A | X0 = x ). This way
the time stationary Markov property reads as

P ( Xt ∈ A | X0 = x, Fs ) = P ( Xt−s ∈ A | X0 = y ) |y=Xs a.s.

This way the subscript should be read as the starting point of the process. So
the time stationary Markov property means that we can think that we restart
the time and treat the current point Xs(ω) as a new starting point.

Now the first attempt to a definition of a Markov process.

3.7. Preliminary definition. By a Markov process M we mean a triplet
M = (Xt, Ft, {Px}), where (Xt) is a stochastic process, which has a time
stationary Markov property with respect to a filtration (Ft) and with respect
to every probability measure Px, when x ∈ S. We will also require that for
every x ∈ S we have Px ( X0 = x ) = 1 and that the mapping x �→ Px ( A ) is
S -measurable for every A ∈ σ(Ft; t ≥ 0).

3.8. Remark. Since the previous definition is bit “heavy”, we will just call (Xt)
as a Markov process and only if really needed, we will specify the filtration and
the probability measures we are using. So only when it is necessary to separate
the process and the triplet M, we will use the above vocabulary.

As you might have known (or guessed), Brownian motion is a Markov pro-
cess.

3.9. Theorem. The Brownian motion is (a time stationary) Markov process
with respect to its history Ht = σ({ Bs : s ≤ t }).

Proof. This just generalises the one previous computation and for simplicity,
let’s just prove it for 1-dimensional case. We defined Px ( A ) = P ( A | B0 = x ),
so clearly Px ( B0 = x ) = 1. We know that the Brownian motion has indepen-
dent increments which means that

B(t) − B(s) ⊥⊥ Hs

Since

Py ( B(t) ≤ x | Hs ) =
�

j∈Z
Py

�
j2−n ≤ B(s) < (j + 1)2−n, B(t) ≤ x | Hs

�
,

we can estimate
Py ( B(t) ≤ x | Hs ) ≤

�

j∈Z
Py

�
B(s) ∈ I(j, n), B(t) − B(s) ≤ x − j2−n | Hs

�

=
�

j∈Z
[ B(s) ∈ I(j, n) ]P

�
B(t) − B(s) ≤ x − j2−n

�
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Since B(t) − B(s) ∼ B(t − s) − B(0), we have

Py ( B(t) ≤ x | Hs ) ≤
�

j∈Z
[ B(s) ∈ I(j, n) ]Pj2−n ( B(t − s) ≤ x )

= PBn(s) ( B(t − s) ≤ x )

where
B(n)(s) =

�

j

[ B(s) ∈ I(j, n) ]j2−n ≤ B(s)

When n → ∞, the random variables B(n)(s) ↑ B(s) almost surely. There-
fore, by continuity of distribution function17 we obtain Py ( B(t) ≤ x | Hs ) ≤
PB(s) ( B(t − s) ≤ x ). Estimating from above gives the converse inequality.
The remaining requirement of x �→ Px ( A ) is B(R+)-measurable is left as an
excercise. �

We notice that it really was the Markov property we used in constructing
the Brownian motion in the first place. We can, therefore, state and split the
actual calculation as an excercise that

3.10. Remark. Let (Xt) be a Markov process. Suppose that for every bounded
and measurable function f , for every x ∈ S and for every time instance t ≥ 0
we know the values

P (X)
t f(x) := Ex f(Xt) .

Then the mappings (P (X)
t ) form a semigroup18 on bounded and measurable

functions and that the mappings (P (X)
t ) determine uniquely the finite dimen-

sional marginals19 of the process (Xt) given {X0 = x} for any x ∈ S.

How does the previous remark work for the Brownian motion ? Now

P (B)
t f(x) = Ex f(Bt) = E0 f(x + Bt) =

ˆ
Rd

f(x + y)qt(y) dy

=
ˆ
Rd

f(y)qt(y − x) dy

where qt is the density function20 of the d-dimensional Gaussian random vari-
able Bt ∼ N(0, tI). So the function

(3.11) pt(x, y) := qt(y − x) = (2πt)−d/2 exp
�
−1

2 |x − y|2/t
�

.

determines uniquely the Brownian motion. Let’s give names to these functions.
17

the distribution function of a R+-valued random variable X is F (x) = P ( X ≤ x )

18
by semigroup we mean that P (X)

t P (X
s f(x) = P (X)

t+s f(x) ja P (X)
0 f(x) = f(x)

19
i.e. the measures (A1, . . . , An) �→ Px ( ∀j : X(tj) ∈ Aj )

20
the density function is the Radon–Nikodym derivative of the distribution with respect

to the Lebesgue measure, if it happens exists
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3.12. Definition. Let (Xt) be a Markov process and let µ be a measure on
the state space S. The mappings (P (X)

t ) are called as transition probability
operators, if every P X

t f is bounded and measurable, when ever f is bounded
and measurable. The function p(X)

t (x, y), that satisfies the condition

P (X)
t f(x) =

ˆ
S

p(X)
t (x, y)f(y)µ( dy)

for every bounded and measurable f , for every t > 0 and for µ-a.e.. points
x ∈ S and is measurable in x, is called as the transition probability density
with respect to measure µ.

For Brownian motion the function pt in equation (3.11) is, therefore, the
transition probability density of the Brownian motion with respect to Lebesgue
measure.

We notice that the mapping pt is a C∞-function,21 when t > 0 with respect
to to all the variables x, y and t. Moreover,

∂tpt(x, y) = pt(x, y)∂t log pt(x, y) = (−1
2t−1d + 1

2 |x − y|2t−2)pt(x, y),

∂xj pt(x, y) = pt(x, y)∂xj log pt(x, y) = −(xj − yj)t−1pt(x, y),

∂2
xj

pt(x, y) = pt(x, y)
�
(xj − yj)2t−2 + ∂xj log pt(x, y)

�

= 2pt(x, y)
�

1
2(xj − yj)2t−2 − 1

2t−1
�

�xpt(x, y) = 2pt(x, y)
d�

j=1

�
1
2(xj − yj)2t−2 − 1

2t−1
�

= 2∂tpt(x, y).

Thus, we have found out that the mapping pt satisfies the heat equation ∂tpt(x, y) =
1
2�xpt(x, y) = 1

2�ypt(x, y) for every t > 0 and for every x, y ∈ Rd. Further-
more, we notice that (Excercise) that if f is continuous and bounded, then

lim
t→0

P (B)
t f(x) = f(x)

The mapping pt is therefore called as the heat kernel, since it satisfies the
following singular initial value problem for heat equation






∂tpt = 1
2�ypt, when t > 0

p0 = δx,

where δx is the Dirac point mass at the point x ∈ Rd. One good way of
understanding this singular equation is to approach it directly via the transi-
tion probability operators, since by the Lebesgue dominated convergence the

21
i.e. infinitely differentiable
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function ut = P (B)
t f also is a solution to an initial value problem for the heat

equation 




∂tut = 1
2�yut, when t > 0

u0 = f.

So, if we are given a transition probability density, we can construct the
Markov process starting from that. If we don’t have a density, it is still ex-
tremely helpful to talk about transition functions that will still provide the
transition probability operators as integrals.

3.13. Definition. A function (t, x, B) �→ Pt,x(B) on [0, ∞) × S × S is called
a transition function if

i) for all t ≥ 0 and x ∈ S, the function B �→ Pt,x(B) is a probability
measure on (S, S ) and P0,x = δx

ii) for all t ≥ 0 and B ∈ S , the function x �→ Pt,x(B) is S -measurable
iii) for all t ≥ 0, s ≥ 0, x ∈ S and B ∈ S it satisfies

Pt+s,x(B) =
ˆ

S

Pt,x( dy)Ps,y(B)

The last condition iii) is called Chapman–Kolmogorov equation. For Brow-
nian motion we notice that

P (B)
t,x (A) =

ˆ
A

pt(x, y) dy

is the transition function. Also we notice that the transition probability oper-
ator can be expressed with the transition function

P (B)
t f(x) =

ˆ
Rd

f(y)Pt,x( dy).

So, even if we don’t necessarily have the transition probability density, we still
are going to have something almost nice.

3.14. Lemma. Suppose (Pt,x) is a transition function. Then there exists a
Markov process M = (Xt, Ht, Px) such that Pt,x(A) = Px ( Xt ∈ A ) for every
t ≥ 0 and every A ∈ S .

Proof. We leave the constrution of Px and the process (Xt) and the condition
that Px(X0 = x) = 1 as an excercise. These follow from the Kolmogorov ex-
tension theorem.22. So we only need to define the finite dimensional marginals
of Px, which are given by

Px(Xt1 ∈ A1, . . . , Xtn ∈ An) =
ˆ

A1

Pt1,x( dy1) . . .

ˆ
An

Ptn−tn−1,yn−1( dyn)

22
Recall we assume that S is a Borel subset, which is needed for the Kolmogorov extension

theorem
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for every t1 < t2 < · · · < tn and every Aj ∈ S .
We will still need to verify the measurability x �→ Px(A) for every A ∈ F∞

and the Markov property, i.e.

Px ( A, Xt ∈ B ) = Ex [ A ]PXs ( Xt−s ∈ B )

holds for every x, for every 0 ≤ s < t, for every A ∈ Fs and for every B ∈ S .
Since we cannot directly describe all the elements in σ-algebras F∞ and Fs,

we will first show something less, by proving it for a certain special sets that
we can describe: A = {Xtj ∈ Cj, j = 1, . . . , n}, where n ∈ N, time instances
0 ≤ t1 < · · · < tn and Cj ∈ S . Let’s denote the family of these kinds of sets
by A∞ and if, in addition, tn ≤ t, then by At. We assume that we know23 that
F∞ = σ(A∞) and Ft = σ(At). We also consider known that both A∞ and At

are algebras.24

When we know the claimed measurability and Markov property for these
sets, we will show that the claims hold for the full σ-algebras as well.

Let’s start with the measurability. So, we want to show that

x �→ Ex f1(Xt1) . . . fn(Xtn)

is S -measurable for every n, for every sequence of times 0 ≤ t1 < · · · < tn and
for every bounded and measurable fj which makes the claim bit more general,
but easier to prove. The orginal claim would then follow by choosing fj = [Cj].

Suppose we know that

Ex f1(Xt1) . . . fn(Xtn) = Pt1gn,1(x)

when
gn,j = fjPsj gn,j+1, sj = tj+1 − tj ja gn,n = fn.

We will (again) omit the details of this and leave it to excercises. Now since
fj is measurable for every j and Psj g is measurable for measurable g for ev-
ery j, therefore every gn,j is measurable by induction and hence the claimed
measurability follows.

Simililarly the Markov property claim is

Px

�
Xtj ∈ Cj, j ≤ n

�
= Ex [ Xtj ∈ Cj, j < n ]PXtn−1

�
Xtn−tn−1 ∈ Cn

�

This follows from the identity

Pt1g(1)
n,1 = Pt1g(2)

n−1,1

23
and this is quite easy excercise type material

24
just additive, not necessarily σ-additive
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where

g(1)
n,j = [ Cj ]Psj g

(1)
n,j+1, and g(1)

n,n = [ Cn ]

and

g(2)
n−1,j = [ Cj ]Psj g

(2)
n−1,j+1, and g(2)

n−1,n−1 = [ Cn−1 ]Psn−1 [ Cn ].

So, we notice that the claim follows if

g(1)
n,n−1 = g(2)

n−1,n−1.

But this is immediate, since

g(2)
n−1,n−1 = [ Cn−1 ]Psn−1g(1)

n,n = g(1)
n,n−1.

In the end of the proof, we will show that the measurability can be extended
from the algebra A∞ to the σ-algebraa F∞. This follows from the Dynkin’s
π-λ Theorem, as we will soon see.

Denote

G = { A ∈ F∞ : x �→ Px(A) is measurable }

so we are now expressing the wanted claim as G = F∞. We already know that
A∞ ⊂ G ⊂ F∞ = σ(A∞). If we manage to show that G is a Dynkin system25

then the Dynkin’s π-λ Theorem says that σ(A∞) ⊂ G , which proves the claim.
First of all, S ∈ G , since S ∈ A∞. Moreover, if A ∈ G , then x �→ 1−Px(A) =

Px(AC) is measurable and thus, AC ∈ G . Let (Ai) ⊂ G and suppose Ai∩Aj = ∅
for every i �= j and denote the union of these sets by A. By σ-additivity

x �→ Px(A) =
�

j

Px(Aj)

which is measurable as a sum of measurable functions. So A ∈ G and we have
verified that G is a Dynkin system.

Extending the Markov property is done with the same method, so let’s omit
that. �

3.15. Remark. We will later on update our idea of Markov processes and this
is still preliminary.

25
a family G is a Dynkin system on the set S, if S ∈ G , SC ∈ G and it is closed with

respect to countable unions of disjoint sets (Ai) ⊂ G i.e.
�

Ai ∈ G , if Ai ∩ Aj = ∅ for every

i �= j
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3.2. Martingales. Before returning back to Markov processes and specific
type Markov processes we will jump to another property of a Brownian motion
namely the martingale proporety.

Where as the Markov proporety gives a method to describe the future evo-
lution based on simply knowing the “current” state, the martingale property
tells that what we expect to happen in future, given the history, is that nothing
really changes.

So we define

3.16. Definition. Let (Xt) be a real valued stochastic process and (Ft) a
filtration. We say that X is a martingale with respect to filtration (Ft) (or
(Ft)-martingale), if E |X|t < ∞ for every t ∈ T , process X is (Ft)-adpated26

and

(3.17) Xt = E (Xs | Ft)

for every time instance s > t ∈ T . If the equality = is replaced in condi-
tion (3.17) by inequality ≤ (respectively ≥), then this process is called as a
submartingale (respectively supermartingale).

3.18. Remark. Note that this means that for martingales the mean function
E Xt is constant, for submartingales it is an increasing function and for super-
martingales it is a decreasing function.

First some examples of martingales (namely, 1D-Brownian motion and some
of its functions).

3.19. Theorem. Brownian motion is a martingale with respect to its history.

Proof. So we know already that B is adapted and integrable. And since it has
independent increments,

E (Bs | Ht) = E (Bs − Bt + Bt | Ht) = Bt + E (Bs − Bt) = Bt.

�

3.20. Example. A process Yt := B2
t is clearly not a martingale, since, for

example, t �→ E Y t = t is not a constant but it is increasing function. However,
it is a submartingale with respect to the history of Brownian motion, since it’s
clearly adapted, integrable and moreover,

E
�
B2

s | Ht

�
= E

�
(Bs − Bt)2 + 2BsBt − B2

t | Ht

�
≥ 2BtE (Bs | Ht) − B2

t

where we just estimated the positive term away and hence Yt ≤ E (Ys | Ht) .
26

adapted means Xt is Ft-measurable for every t
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Moreover, the process Xt := Yt −t is a martingale with respect to the history
of Brownian motion. Again, X is adapted and E |X|t ≤ t + E Yt = 2t < ∞.
Now we have to actually compute the omitted term in the previous calculation,
but by independence of increments

E
�
(Bs − Bt)2 | Ht

�
= E (Bs − Bt)2 = s − t.

Collecting these, we therefore have,

E (Ys | Ht) = (s − t) + Yt = s + Xt

or E (Xs | Ht) = Xt.

3.21. Example. If f is any convex function and X is a martingale, then f(Xt)
is a submartingale if in addition we know that E |f(Xt)| < ∞ for every t ∈ T .
This already shows that |B(t)|, B(t)+, eB(t), etc. are submartingales, which
however are not martingales.

3.22. Remark. In the sequal we will only talk about super- tai submartingales.
It is good to notice that if (Xt) is a submartingale, then (−Xt) is a super-
martingale and vice versa.

Martingales have so many good properties and one of the most important
is the good integration theory so we will be collecting these properties during
the road. In addition, the martingales are suitably well behaved and have very
good limit properties.

Quite a many results concerning martingales are first formulated to dis-
crete time martingales (like the Upcrossing inequality ja Doob’s maximal-Lp-
inequalities, for instance in “Stokastiset differentiaaliyhtälöt” -course material),
but we will in the sequel formulate these with countable time sets as well as
right continuous processes. This assumption on right continuity will be re-
peated many times later on.

Upcrossing inequality tells that a supermartingale will not cross a given
interval unboundedly many times in a bounded time interval. We define the
upcrossing number U(f, T, [a, b]) as:

U(f, TF , [a, b]) = #{upcrossings of [a, b] a function f makes on a set TF }

and U(f, T, [a, b]) = sup{ U(f, TF , [a, b]) : TF ⊂ T }

when TF = {t1 < · · · < td}

By an upcrossing on a set TF we mean the time instances a1 < b1 < · · · < an <

bn ⊂ TF , that are defined recursively as

ak+1 = min{ tj > bk : f(tj) < a }, bk+1 = min{ tj > ak+1 : f(tj) > b }
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3.23. Lemma (Upcrossing inequality). Let (Xt) be supermartingale with respect
to filtration (Ft). Let T0 ⊂ T = [0, ∞) be countable and dense. Then

(b − a)E U(X, T0, [a, b]) ≤ sup
t∈T0

E (Xt + a)−

We will still introduce Joseph Leo Doob’s martingale inequalities.

3.24. Theorem (Doob’s maximal-Lp-inequalities). Let (Xt) be supermartingale
with respect to filtration (Ft). Let T0 ⊂ T ⊂ [0, ∞) be a countable and dense.
Then

λpP
�

sup
t∈T0

|Xt| ≥ λ

�

≤ sup
t

E X−
t .

Moreover, when p > 1, we have

E sup
t∈T0

|Xt|p ≤
�

p

p − 1

�p

sup
t

E |Xt|p .

These generalize nicely to the continuous case.

3.25. Corollary (Doob’s maximal-Lp-inequalities (part II)). If (Xt) is right
continuous supermartingale and T ⊂ R is an interval and X∗

t = sups≤t|Xs|,
then for every t ∈ T it holds that

λpP ( X∗
t ≥ λ ) ≤ E |Xt|p .

Furthermore, when p > 1, we have for every t ∈ T

E (X∗
t )p ≤

�
p

p − 1

�p

E |Xt|p .

With the help of these results we can say somehting about the paths of
supermartingales, namely that they have limits from both directions.

3.26. Theorem. Let (Xt) be a supermartingale with respect to filtration (Ft).
Let T0 ⊂ T = [0, ∞) be countable and dense. Then with probability 1 it holds:
for every t ∈ [0, ∞)

X(t+, ω) = lim
T0�s↓t

X(s, ω)

the limit exists and for every t ∈ (0, ∞)

X(t−, ω) = lim
T0�s↑t

X(s, ω)

the limit exists. Moreover, for any bounded interval I, we have

sup
t∈I∩T0

|Xt| < ∞

almost surely.
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Proof. Suppose that t ∈ T is a time instance, that has no right (or left) limits.
We will show that this event, say A, has a probability 0. Since the treatment
from left and right are analogous, let’s just consider the limit from right. Since
the limit does not exist, we have

lim inf
T0�s↓t

X(s, ω) < a < b < lim sup
T0�s↓t

X(s, ω)

for some rational numbers a < b. This means also that the upcrossing number
U(f, T0, [a, b]) = ∞, where f = s �→ X(s, ω). We have to consider that these
a and b may depend on the elementary event ω, so we taking this account we
have

P ( A ) ≤ P ( B(a, b) for some a, b ∈ Q ) =
�

a,b∈Q
P ( B(a, b) )

where
B(a, b) = {U(X, T0, [a, b]) = ∞}

But now the Upcrossing inequality says that P ( B(a, b) ) = 0, which implies
that P ( A ) = 0.

The second part (the boundedness) follows almost directly from Doob’s max-
imal inequality, when p = 1. �

As a corollary we find that

3.27. Corollary. If (Xt) is a supermartingale with respect to filtration (Ft)
and it is right continuous, then it has left limits everywhere and it is bounded
on bounded intervals, almost surely.

Proof. This will be split as an excercise. �

Let’s end the first part of martingales to the important convergence result.

3.28. Theorem (Martingale Convergence Theorem). Suppose (Xt) is a right
continuous supermartingale, that satisfies

A := sup
t

E X−
t < ∞.

Then there exists a random variable X∞, such that Xt → X∞ as t → ∞ almost
surely and the limit random variable X∞ is integrable.

Proof. The condition together with Upcrossing inequality provides us

(b − a)E U(X, T0, [a, b]) ≤ a + A,

where T0 ⊂ T = R is dense and countable. From right continuity we can
deduce (but let’s omit the exact details), that

(b − a)E U(X, T, [a, b]) ≤ a + A.
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Using the same technique as in the proof of Theorem 3.26 we can therefore
deduce that

P
�

lim inf
t→∞

Xt < lim sup
t→∞

Xt

�
= 0.

But this already says that X∞ exists almost surely, but it might possibly be
±∞. On the other hand the Fatou’s Lemma gives

E X−
∞ ≤ lim inf

t→∞
E X−

t ≤ A.

Moreover, the supermartingale property gives an estimate

E X+
t = E Xt + E X−

t ≤ E X−
t + E X0

and hence Fatou’s Lemma again gives

E X+
∞ ≤ lim inf

t→∞
E X−

t + E X0 ≤ A + E X0 < ∞

so the limit random variable |X∞| = X+
∞ + X−

∞ is also integrable. �

We will return again to martingales few times later on since we need the
stopping times before we can introduce the Optional Stopping Theorem, which
is fundamental for the later treatment.


