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2. Brownian motion

We will now define the Brownian motion. We will see eventually few different
kinds of definitions for the same concept.

2.1. Preliminary definition. 1-dimensional Brownian motion {B(t)}t≥0 is
a Gaussian process, with the mean E B (t) = 0 and the covariance function
E B (t)B(s) = min(t, s).

Recall that the process is called Gaussian, if its every finite sample is nor-
mally distributed random variable. In other words, if for every n ∈ N+ and
every t1 < · · · < tn, the random variable (B(t1), . . . , B(tn)) is n-dimensional
Gaussian random variable. From this simple preliminary definition we can
deduce a lot of the properties of the process (naturally, since this is (nearly)
equivalent with any other definition)

2.2. Lemma. 1-dimensional Brownian motion has the following properties:
i) it has identically distributed increments, i.e. the process X(t) = B(t +

h) − B(h) is a Brownian motion for every h > 0.
ii) it has independent increments, i.e. for every n ∈ N+ and every t1 <

· · · < tn the family {B(t2) − B(t1), . . . , B(tn) − B(tn−1)} is an indepen-
dent family of random variables.

iii) the variance of an increment is

V (X(t) − X(s)) = V X(t − s) = |t − s|

iv) the increments satisfy for every N ∈ N:

E |X(t) − X(s)|2N ≤ γN |t − s|N .

v) it has a Hölder continuous13 version and any α < 1
2 can be used as its

Hölder exponent.
vi) Brownian motion exists and we may assume that it has (Hölder) con-

tinuous paths.

Proof. The properties i), ii), iii) and iv) are left as for excercises and we
comment on properties v) and vi) below. �

The property vi) follows from v) and Andrey Nikolaevich Kolmogorov’s Ex-
tension Theorem, that says, that to show the existence of a process it is enough
to construct the finite marginal in a consistent way.

13
a mapping f : S → R is Hölder continuous with exponent α > 0 on a normed space S,

if � f(x) − f(y) � ≤ c|x − y|α
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Theorem (Kolmogorov’s Extension Theorem). Let T be a set of times and
S ⊂ Rd is a Borel subset. Then the process (X(t); t ∈ T ) exists if and only if
for every finite subset F ⊂ T the restricted stochastic process (XF (t); t ∈ F )
exists and if F � = F ∪ {t} then (XF �(t); t ∈ F ) is identically distributed with
(XF (t); t ∈ F ).

Proof. This is omitted. �

2.3. Remark. Let’s think what the theorem says. If (X(t)) exists then nat-
urally the restricting the set of times does not change the existence so the
one direction is simple. The extension part (from finite to infinite) is more
demanding. When the set of times T1 = {t1, . . . , tn} is finite, the existence of
the random variable is equivalent with the existence of a n-dimensional ran-
dom variable (X(t1), . . . , X(tn)). This might depend of T1, so we denote this
potential dependence by writing (XT1(t)). If we enlarge the set of times with
one time instance t, so T2 = {t1, . . . , tn, t} and the XT2 corresponds to n + 1-
dimension random variable (XT2(t1), . . . , XT2(tn), X(t)). The condition that
the stochastic process (XT2(t)) restricted to T1 is identically distributed then
means that

P
�

XT1(tj) ∈ Aj, ∀j = 1, . . . , n
�

= P
�

XT2(tj) ∈ Aj, ∀j = 1, . . . , n
�

Most of the time the set of times is ordered i.e. t1 < · · · < tn. Then adding one
time instance might go to n + 1 different places, i.e. t < t1, or t1 < t < t2, and
so on. Usually we express this consistency condition in terms of the ordered
marginal distributions

µT2
(t1,...,tn,n+1)(A1, . . . , Ak, S, Ak+2, . . . , An)

= µT1
(t1,...,tk,tk+2,tn+1)(A1, . . . , Ak, Ak+2, . . . , An)

The assumption that the state space S is a Borel subset (with S = B(S))
is not necessary but sufficient. The “real” requirement is that the probability
measures µT1 are always inner regular.14 The space with this property is called
a Radon space and if we assume that S is a Borel subset, then (SN , S (SN))
is a Radon space for every N .

The properties i), ii) and iii) of the Brownian motion easily provide the finite
dimensional marginals. Let’s construct the distribution of (B(t1), B(t2), B(t3)),
where 0 < t1 < t2 < t3, as an example. We will determine the conditional

14
A measure µ is inner regular, if µ(B) of any Borel set B is the supremum (i.e. be

approximated from inside) of µ(K) for compact sets K ⊂ B.
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expectation
P ( Bt3 ∈ dx3 | B(t1), B(t2) )

= P ( Bt3 − Bt2 ∈ dx3 − B(t2) | B(t1), B(t2) )

= P ( Bt3 − Bt2 ∈ dx3 − x2 | B(t1), B(t2) ) |x2=B(t2)

= P ( Bt3 − Bt2 ∈ dx3 − x2 ) |x2=B(t2)

= qt3−t2(x3 − Bt2) dx3,

where ft is the density function of the normally distributed random variable
N ∼ N(0, t). In the second identity we used the fact, that in the measurable
part can be considered known in the conditional expectation and in the third
we used the definition of independence. From this we can deduce further that

P ( B(t2) ∈ dx2, Bt3 ∈ dx3 | B(t1) )

= E (P ( B(t2) ∈ dx2, Bt3 ∈ dx3 | B(t2), B(t1) ) | B(t1))

= E (qt3−t2(x3 − B(t2))[ B(t2) ∈ dx2 ] | B(t1)) dx3

= qt3−t2(x3 − x2)P ( B(t2) ∈ dx2 | B(t1) ) dx3

= qt3−t2(x3 − x2)qt2−t1(x2 − Bt1) dx2 dx3,

where we repeat the same deduction again and we conditionalised inside a
conditional expectation. This then leads to the formula for the distribution

P ( B(t1) ∈ dx1, B(t2) ∈ dx2, Bt3 ∈ dx3 )

= qt3−t2(x3 − x2)qt2−t1(x2 − x1)qt1(x1) dx1 dx2 dx3.

We will return to this computation soon when we start to study Markov pro-
cesses.

Property v) follows from another theorem of Kolmogorov, namely from the
Kolmogorov Continuity Theorem. The following is a very simplified version,
but that’s good enough for us.

Theorem (Kolmogorov Continuity Theorem). Suppose that state space S ⊂
Rd is open or closed and set of times T = [a, b] is a closed interval. Let
(X(t); t ∈ T ) be a stochastic process. If we can find such strictly positive
constants α, β and γ that

E |X(t) − X(s)|α ≤ γ|t − s|1+β,

then the process (X(t)) has a version (�X(t)), whose almost all paths satisfy

|�X(t) − �X(s)| ≤ C|t − s|r/α

for every t, s ∈ [a, b] and for every r ∈ (0, β). Furthermore, if X itself is
continuous, then X itself satisfies the Hölder condition above.
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Proof. Omitted. �

Since we now know that Brownian motion can be assumed to behave nicely,
it is reasonable to add this to definition to begin with.

2.4. Definition. A 1-dimensional Brownian motion (B(t); t ≥ 0) is continuous
Gaussian process, that satisfies the following conditions:

(1) E B(t) = 0 and V B(t) = t for every t ≥ 0
(2) if t1 < · · · < tn and h > 0, then the distribution of the random variable

(B(t2 + h) − B(t1 + h), . . . , B(tn + h) − B(tn−1 + h))

does not depend on the value of the parameter h.
(3) if t1 < · · · < tn, then the random variables {B(t2) − B(t1), . . . , B(tn) −

B(tn−1)} are independent.

The property (2) above is called stationary increments and the property
(3) is called independent increments. We can now simply generalize this to
higher dimensions and we can deduce the existence and the properties of the
higher dimensional Brownian motion from the existence and properties of 1-
dimensional Brownian motion.

2.5. Definition. Let d ∈ N+. A d-dimensional Brownian motion (B(t); t ≥
0) = ((B(1)(t), . . . , B(d)(t)); t ≥ 0) is a continuous d-dimensional Gaussian pro-
cess, that satisfies the following conditions:

(1) for every j = 1, . . . , d coordinate process B(j) is a Brownian motion
(2) processes B(j) ⊥⊥ B(k) when j �= k.

This definition implies that Brownian motion “starts” from the origin. We
can generalize it to start from any given point x ∈ Rd by defining:

2.6. Definition. Let x ∈ Rd. We say that a process X(t) is a Brownian motion
starting from point x, if X(t) − x is a Brownian motion.

We also notice that the probability for the Brownian motion that starts from
the origin to be at the time instance t > 0 outside a ball BR(0) of radius R is
at least

P0 ( |Bt| > R ) ≥
�
2P

� √
tN > R

� �d
> 0,

where N ∼ N(0, 1). The estimate follows, since a ball of radius R fits inside
a cube with side lenght 2R. Since the coordinate Brownian motions are inde-
pendent, we can reduce the computation of the probability to the distribution
of a real-valued standard Gaussian distributed random variable N .
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So it is possible, that the Brownian motion does not stay inside of any
bounded domain, and we shall soon see that it is almost sure15, that it leaves
any domain with enough time or in other words, with probability 1 there is a
t > 0, such that |Bt| > R.

Thus, if we want to stay inside of a given domain D, we must use some other
process than the Brownian motion.

15
remember, almost sure means with probability 1


