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11. Reflecting Brownian motion in higher dimensions

The construction of the 1-dimensional reflecting Brownian motion provides
two methods for constructing the reflecting Brownian motion in G ⊂ Rd.

The first method is to generalize the Skorohod equation and use that to
construct reflecting Brownian motion R in G. This we will cover in more
detail.

The other method is more analytical. We construct a Markov process X

which we then show to coincide in law with R by showing that both of these
solve a Submartingale Problem of Stroock and Varadhan. This we will also
cover in detail.

11.1. Generalized Skorohod’s equation. Suppose we want to construct
a reflecting Brownian motion in a domain G ⊂ Rd with sufficiently smooth
boundary so that we can easily define the outer unit normal ν : ∂G → Rd to
every point x ∈ ∂G. For instance, if G is a unit ball, then we have ν(x) = x for
every x ∈ ∂G and if G = Rd−1×R+ is the half space, then ν(x) = (0, . . . , 0, −1)
gives the outer unit normal.

11.1. Definition. Suppose y is a path in Rd and y(0) ∈ G. The pair (ξ, L)
is called the solution of the Skorohod problem SE(y, G) for y and G, if (ξ, L)
have the following properties.

i) The t �→ ξ(t) is a path in G.
ii) The t �→ L(t) is a nondecreasing function, and which increases only

when ξ ∈ ∂G, i.e.

L(t) =
ˆ t

0
[ ξ(s) ∈ ∂G ] dL(s)

iii) the functions ξ, L and y together solve the Skorohod’s equation

ξ(t) = y(t) − 1
2

ˆ t

0
ν(ξ(s)) dL(s)

If ξ and L are continuous, we will call the solution continuous. We also write
(ξ, L) = (ξ�

, L
�) for two solutions, if ξ = ξ

� and L = L
�.

We notice that this is a straight forward generalization of the 1-dimensional
Skorohod’s equation. This equation can be solved in Lipschitz domains but we
will consider only C

2-domains.

11.2. Theorem (Uniqueness for SE(y, G)). Suppose G has a C
2-boundary and

suppose y is a continuous path. If (ξ, L) and (ξ�
, L

�) are two continuous solution
to SE(y, G), then (ξ, L) = (ξ�

, L
�).
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11.3. Theorem (Existence for SE(y, G)). Suppose G has a C
1-boundary and

suppose y is a continuous path. Then there exists a continuous solution (ξ, L)
to the Skorohod problem SE(y, G).

Once we have these, we can apply that to Brownian motion i.e. solve for
every path of Brownian motion the Skorohod problem SE(B·(ω), G) thus ob-
taining a unique solution (R(ω), L(ω)). It is easy to check that both R and L

are processes that are adapted to the filtration (F B
t ).

11.4. Definition. We say that an process R is a reflecting Brownian motion
in G starting at x ∈ G, if it has the same law as the solution of the Skorohod
problem SE(B·, G) for Brownian motion starting at x ∈ G.

We would like to show that reflecting Brownian motion is a strong Markov
process. For this we can use the Submartingale Problem of Stroock and Varad-
han.

11.2. Submartingale problem. The following problem was introduced by
Daniel Stroock and Srinivasa Varadhan in 1971. Let’s first introduce the mea-
surable space of continuous functions.

11.5. Definition. We will denote by �Ω the set of continuous functions �ω that
map [0, ∞) to Rd.

We also define �Xt(�ω) := �ω(t) which defines a stochastic process on (�Ω, M 0)
when we define a σ-algebra M t0 := σ({ �Xt : t ≥ t0 }).

The process �X generates a natural filtration (M t0
t )t≥t0 on Ω by M

t0
t :=

σ({ �Xs : t0 ≤ s ≤ t }).

The Submartingale Problem is closely related with the connection we ob-
served while we considered the Dirichlet problem and the Kakutani’s repre-
sentation theorem. Let’s first formulate the special case of the Submartingale
Problem and after we have seen how it connects to the reflecting Brownian
motion, we can formulate the Submartingale Problem in general.

We start by defining a partial differential operator Lt(a, b). Here a = (t, x) �→
a(t, x) is a matrix valued function and b = (t, x) �→ b(t, x) is a vector valued
function. For the reflecting Brownian motion these coefficients are the iden-
tity matrix a(x, t) = I and zero vector b(t, x) = 0. In this case, the partial
differential operator Lt(I, 0)f(t, x) = 1

2�xf(t, x).
The reflection on the boundary corresponds in the Submartingale Problem

to a partial differential operator Jt(γ, ρ) on the boundary. In the reflecting
Brownian motion case the coefficients γ(x, t) = −ν(x) for every x ∈ ∂G and
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the coefficient ρ(x, t) = 0. In this case, the operator becomes Jt(−ν, 0)f(t, x) =
−∂ν(x)f(t, x) = −ν(x) · ∇f(t, x) for every x ∈ ∂G.

Now we can introduce the Submartingale Problem.

11.6. Definition. We say that a probability measure P on the measurable
space (�Ω, M t0) solves the Submartingale Problem sMP(a, b, γ, ρ, G) on the do-
main G for coefficients a, b, γ and ρ if it has the following two properties:

(A) ∀t ≥ t0 : P(�Xt ∈ G) = 1 and
(B) ∀f ∈ C

1,2
0 ([0, ∞) × Rd) that satisfy Jt(γ, ρ)f(t, x) ≥ 0 on [t0, ∞) × ∂G

the process

Zt := f(t, �Xt) −
ˆ t

t0

[ �Xu ∈ G ](∂uf + Luf)(u, �Xu) du

is a (M t0
t )-submartingale with respect to the probability measure P.

The solutions of the Submartingale Problem have many nice properties. One
is the uniqueness of the solution to the problem. The following result is from
Stroock and Varadhan 1971.

11.7. Theorem (Uniqueness for time-independent coefficients, Stroock–Varad-
han 1971). If the coefficients a, b, γ and ρ don’t depend on time, and G has
C

2-boundary, then the following conditions are sufficient for the uniqueness of
the solution of sMP(a, b, γ, ρ, G).

i) the function x �→ a(x) is continuous and for every x ∈ G the matrix
a(x) is symmetric and positive definite (i.e. all the eigenvalues are
strictly positive)

ii) the function x �→ b(x) is bounded and measurable
iii) the function x �→ γ(x) is bounded, locally Lipschitz and there exists a

β ≥ 0 such that for every x ∈ ∂G the inner product −γ(x) · ν(x) ≥ β

i.e. the vector γ(x) points strictly inside G.
iv) the function ρ is bounded, continuous and non-negative.

When a solution to the Submartingale Problem sMP(a, b, γ, ρ, G) is unique
then the process �X is a strong Markov process.

11.8. Theorem (Strong Markov property and sMP, Stroock–Varadhan 1971).
Suppose the Submartingale Problem sMP(a, b, γ, ρ, G) has a unique solution
P. Then {�Xt, M

t0
t , {Px}} is strong Markov process on the measurable space

(�Ω, M t0) where Px ( A ) = P
�

A | �X0 = x

�
.

How do we benefit from these results ? Well, if we show that the reflecting
Brownian motion defined via Skorohod problem SE(B·, G) generates a proba-
bility measure P that solves the Submartingale Problem sMP(I, 0, −ν, 0, G).
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Then we already know that it is a strong Markov process with continuous
paths, i.e. it is a diffusion process.

11.9. Theorem. Suppose R is a reflecting Brownian motion. Then �P(A) :=
Px ( R· ∈ A ) solves the Submartingale Problem sMP(I, 0, −ν, 0, G) for every
x ∈ G.

Proof. We first note that Px ( R· ∈ A ) = �P(�X· ∈ A). This is since �X·(�ω) =
t �→ �Xt(�ω) = t �→ �ω(t) = �ω and thus, �X·(�ω) ∈ A if and only if �ω ∈ A. This
means that

(11.10) �P(�X· ∈ A) = �P(A) = Px ( R· ∈ A )

The relation (11.10) implies that the condition (A) is equivalent with

Px

�
Rt ∈ G

�
= 1

for every t ≥ t0, but this follows from the Skorohod problem SE(B·, G), since
that says that Rt ∈ G almost surely for every t ≥ 0 for every starting point
x ∈ G.

Suppose now that f ∈ C
1,2
0 ([0, ∞) × Rd) satisfies the boundary condition

−∂ν(x)f(t, x) ≥ 0 for every x ∈ ∂G × (0, ∞).
We notice that the relation (11.10) also implies that the condition (B) stating

�Zt = f(t, �Xt) −
ˆ t

t0

[ �Xu ∈ G ]Af(u, �Xu) du

is a (P, (M t0
t ))-submartingale is equivalent with

Zt = f(t, Rt) −
ˆ t

t0

[ Ru ∈ G ]Af(u, Ru) du

being a (Px, (Ft))-submartingale where Af(u, x) = (∂uf + 1
2�f)(u, x). We

will verify this as the last part of this proof.
So let’s show that Z is a submartingale. We know that R is a continuous

semimartingale since it satisfies the Skorohod equation

Rt = Bt − 1
2

ˆ t

0
ν(Rs) dLs = Bt + Kt
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Since the process K is of locally finite variation, � R, R �t = � B, B �t = tI.
Therefore, we may apply Itō formula to compute f(t, Rt) and we obtain that

f(t, Rt) = f(t0, Rt0) +
ˆ t

t0

∂uf(u, Ru) du +
ˆ t

t0

∇f(u, Ru) · dRu

+ 1
2

ˆ t

t0

�f(u, Ru) du

= f(t0, Rt0) +
ˆ t

t0

Af(u, Ru) du +
ˆ t

t0

∇f(u, Ru) · dRu

Since dRu = dBu − 1
2ν(Ru) dLu by the Skorohod equation, we can write this

identity as

f(t, Rt) = f(t0, Rt0) +
ˆ t

t0

Af(u, Ru) du +
ˆ t

t0

∇f(u, Ru) · dBu

− 1
2

ˆ t

t0

∂ν(Ru)f(u, Ru) dLu

and since 1 = [ Ru ∈ G ] + [ Ru ∈ ∂G ], we obtain that

Zt = f(t0, Rt0) +
ˆ t

t0

[ Ru ∈ ∂G ]Af(u, Ru) du + Mt + Ht

where Mt is a bounded continuous local martingale, which means it is a
bounded martingale. The process Ht is an increasing process, since by assump-
tion −∂ν(x)f(u, x) ≥ 0 for every x ∈ ∂G and therefore, dHt = −1

2∂ν(x)f(u, x) dLt ≥
0.

We are now almost done, since this implies that

(Zt − Zs)[ C ] = (Mt − Ms)[ C ] + (Ht − Hs)[ C ] + (H(2)
s,t )[ C ]

where C ∈ Fs and

H
(2)
s,t =

ˆ t

s

[ Ru ∈ ∂G ]Af(u, Ru) du.

By Fubini’s theorem, we may change the order of integration and expectation,
and thus

Ex [ C ]|H(2)
s,t | ≤ Ex |H(2)

s,t | ≤ � Af �∞

ˆ t

s

Ex [ Ru ∈ ∂G ] du.

With the help of Itō formula and the semimartingale property of R we can
show (Excercise) that Px ( Rt ∈ ∂G ) = 0 and therefore,

Ex [ C ]H(2)
s,t = 0.

Since H is an increasing process, we also have that

Ex [ C ](Ht − Hs) ≥ 0.
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Since M is a martingale, we have that Ex [ C ](Mt − Ms) = 0. Therefore,

Ex (Zt − Zs)[ C ] = Ex

�
(Mt − Ms) + (Ht − Hs) + (H(2)

s,t )
�
[ C ] ≥ 0

which implies that Z is a submartingale since the integrability and that Zt is
Ft-measurable are straight forward to check. �

11.11. Corollary. When G has a C
2-boundary, then reflecting Brownian mo-

tion R exists, is pathwise unique and is a strong Markov process.

11.3. RBM from transition probability density. There is another way to
define reflecting Brownian motion. Now that we know that reflecting Brow-
nian motion is Markov process, we can also construct it from its transition
probability density.

In one dimensional case we note that the transition function is given by

Ptf(x) = Ex f(Rt) = Ex f(|Bt|) = 1√
2πt

ˆ ∞

0
f(y)(e− (x−y)2

2t + e
− (x+y)2

2t ) dy

since we know the transition probability density of the Brownian motion and
thus, we can compute the transition function of reflecting Brownian motion
by change of integration variable. From this we can read that the transition
probability density p of reflecting Brownian motion is

p(t, x, y) = 1√
2πt

(e− (x−y)2
2t + e

− (x+y)2
2t )

for every t > 0 and x, y ≥ 0. In order to generalise this form the one dimen-
sional domain G = (0, ∞) to a domain G in Rd, we notice that p satisfies a
partial differential equation (the heat equation)

∂tp(t, x, y) = 1
2∂

2
xp(t, x, y)

for t, x, y > 0. Moreover, at the boundary ∂G of G, which in this case is the
singleton point ∂G = {0} the partial derivative ∂xp of the transition probability
density satisfies

∂xp(t, 0, y) = 0

for every t > 0 and every y ≥ 0. Finally, the transition probability density
satisfies the Feller property, namely

lim
t↓0

Ptf(x) = f(x)

for every f ∈ Cb(0, ∞).
We can generalize this initial-boundary value problem for the heat equation

to other domains as well. The ∂
2
x becomes the Laplacian and the derivative
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∂xp at x = 0 becomes the normal derivative at the boundary ∂G. Therefore,
we will consider the following initial-boundary value problem

(11.12)






∂tp(t, x, y) = 1
2�xp(t, x, y) for t > 0, x, y ∈ G

∂ν(x)p(t, x, y) = 0 for t > 0, y ∈ G and x ∈ ∂G,

lim
t↓0

ˆ
G

f(y)p(t, x, y) dy = f(x) for x ∈ G.

Here ν(x) is the outer unit normal of the boundary ∂G at the point x ∈ ∂G.
There are many ways to proceed to reflecting Brownian motion from the

equation (11.12). We could use every technique we have from analysis for par-
tial differential equations to show that the this equation has a unique solution
and verify that the solution is a transition probability density for some Markov
process X i.e. verify that

1. the equation (11.12) has a unique continuous solution p,
2. the solution p is positive, i.e. p(t, x, y) ≥ 0 for every t > 0, x, y ∈ G,
3. the solution p defines a probability measure i.e.ˆ

G

p(t, x, y) dy = 1

4. the solution p satisfies the Chapman–Kolmogorov equation

p(t + s, x, y) =
ˆ

G

p(t, x, z)p(s, z, y) dz

5. furthermore, the solution p is symmetric in x and y i.e. p(t, x, y) =
p(t, y, x) for every x, y ∈ G

All these together can be used to show that p generates a Markov process X

which can furthemore shown to be a Feller process with continuous paths al-
most surely. Moreover, we could start from contructing the transition function
directly by considering a related initial-boundary value problem

(11.13)






∂tu(t, x) = 1
2�xu(t, x) for t > 0, x ∈ G

∂ν(x)u(t, x) = 0 for t > 0, and x ∈ ∂G,

u(0, x) = f(x) for x ∈ G.

The previous problem is reduces to this if we could replace the function f by
a Dirac measure δy.

Since we already have constructed a reflecting Brownian motion (at least for
domains with C

2-boundary), we can also proceed by starting form the reflecting
Brownian motion R and verifying that its probability density function satisfies
the equation (11.12) and has the properties listed above.
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11.14. Theorem. Suppose X is a Markov process with p as its transition prob-
ability density. Then �P(A) := Px ( X· ∈ A ) solves the Submartingale Problem
sMP(I, 0, −ν, 0, G) for every x ∈ G.

Proof. Again we start by noting that

(11.15) Px ( X· ∈ A ) = �P(�X· ∈ A).

The relation (11.15) implies that the condition (A) is equivalent with

Px

�
Xt ∈ G

�
= 1

for every t ≥ t0. This on the other hand is equivalent withˆ
G

p(t, x, y) dy = 1

which is the property 3..
The condition (B) is seen to be equivalent with

Z
(f,t0)
t = f(t, Xt) − f(t0, Xt0) −

ˆ t

t0

[ Xu ∈ G ]Af(u, Xu) du

being a (Px, (Ft))-submartingale where Af(u, x) = (∂uf + 1
2�f)(u, x) and f

is smooth enough function with ∂ν(x)f(x) ≤ 0 for every x ∈ ∂G. Now

Ex

�
Z

(f,t0)
t | Fs

�
= Ex(f(t, Xt) | Fs) − f(t0, Xt0) −

ˆ s

t0

[ Xu ∈ G ]Af(u, Xu) du

−
ˆ t

s

Ex([ Xu ∈ G ]Af(u, Xu) | Fs) du

Since we assumed that X is a Markov process (which follows from properties
2. − 4..) we have that

Ex(f(t, Xt) | Fs) = EXs f(t, Xt−s) = EXs f(s + (t − s), Xt−s)

and
Ex([ Xu ∈ G ]Af(u, Xu) | Fs) = EXs [ Xu−s ∈ G ]Af(u, Xu−s)

If we denote g(u, x) = f(u + s, x) for every u, then

Ex(f(t, Xt) | Fs) = EXs g(t − s, Xt−s)

and since we have Ag(u, x) = Af(u + t, x) we also obtain that
ˆ t

s

Ex([ Xu ∈ G ]Af(u, Xu) | Fs) du =
ˆ t−s

0
EXs [ Xu ∈ G ]Af(u + s, Xu) du

= EXs

ˆ t−s

0
[ Xu ∈ G ]Ag(u, Xu) du
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Moreover, since EXs g (0, X0) = g(0, Xs) = f(s, Xs), we can write

Ex

�
Z

(f,t0)
t | Fs

�
= Z

(f,t0)
s − f(s, Xs) + EXs g(t − s, Xt−s)

− EXs

ˆ t−s

0
[ Xu ∈ G ]Ag(u, Xu) du

= Z
(f,t0)
s + EXs Z

(g,0)
t−s

and therefore, Z
(f,t0) is a submartingale, if EXs Z

(g,0)
t−s ≥ 0 for every t0 < s < t.

For this it is sufficient to show that Ex Z
(g,0)

t ≥ 0 holds for every t > 0.
The expectation of the whole expression is

Ex Z
(g,0)

t = Ex g(t, Xt) − Ex g(0, X0) −
ˆ t

0
Ex Ag(u, Xu) du = I − J.

The first term I becomes

I = Ex g(t, Xt) − Ex g(0, X0) =
ˆ

G

g(t, y)p(t, x, y) dy −
ˆ

G

g(0, y)p(0, x, y) dy

=
ˆ

G

(ρx,y(t) − ρx,y(0)) dy =
ˆ

G

ˆ t

0
ρ

�
x,y(u) du dy

where ρx,y(u) = p(u, x, y)g(u, y) and therefore,

ρ
�
x,y(u) = g(u, y)∂up(u, x, y) + p(u, x, y)∂ug(u, y).

Since p(u, x, y) = p(u, y, x) by 5. we have that ∂pp(u, x, y) = ∂up(u, y, x) and
since p satisfies the heat equation, we also have 1

2∂xp(u, x, y) = 1
2∂yp(u, x, y)

and we may write

ρ
�
x,y(u) = 1

2g(u, y)�yp(u, y, x) + p(u, x, y)∂ug(u, y).

The second term J can be written as

J =
ˆ t

0
Ex Ag(u, Xu) du =

ˆ t

0

ˆ
G

Ag(u, y)p(u, x, y) dy du

=
ˆ t

0

ˆ
G

(∂ug(u, y) + 1
2�yg(u, y))p(u, x, y) dy du

=
ˆ t

0

ˆ
G

(∂ug(u, y) + 1
2�yg(u, y))p(u, y, x) dy du

If we write p(x,t)(y) = p(t, y, x) and gt(y) = g(t, y) we may combine the identi-
ties for I and J and we get that

I − J = 1
2

ˆ t

0

ˆ
G

(gu(y)�p(u,x)(y) − p(u,x)�gu(y)) dy du
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Since
∇ · (gu∇p(u,x) − p(u,x)∇gu) = gu�p(u,x) + ∇gu · ∇p(u,x)

− ∇p(u,x) · ∇gu − p(u,x) · �gu

= gu�p(u,x) − p(u,x) · �gu

we may use the Gauß divergence theorem47 with F = gu∇p(u,x) −p(u,x)∇gu and
we obtain

I − J = 1
2

ˆ t

0

ˆ
∂G

gu(y)∂ν(y)p(u, y, x) − p(u, y, x)∂ν(y)g(u, y))σ( dy) du

This difference is non-negative, since by equation (11.12) the ∂ν(y)p(u, y, x) = 0
for every y ∈ ∂G. Hence

I − J = 1
2

ˆ t

0

ˆ
∂G

(−p(u, y, x)∂ν(y)g(u, y))σ( dy) du

Moreover, we kwow by 1. that p(u, y, x) ≥ 0 for every x, y ∈ G and u > 0
and since ∂ν(y)f(u, y) ≤ 0 for every u > 0 and every y ∈ ∂G we deduce that
−p(y, y, x)∂ν(y)g(u, y) ≥ 0 for every u ∈ (0, t) and y ∈ ∂G and so I − J ≥ 0.

This was enough to show that the Z
(f,t0) is a submartingale and the claim

follows. �

47
Gauß divergence theorem states thatˆ

G

∇ · F (x) dx =

ˆ
∂G

ν(x) · F (x)σ( dx)


