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10. Skorohod’s equation and reflecting Brownian motion in 1D

Now that we have shown that R = |B| is a good candidate for the reflecting
Brownian motion (i.e. it behaves like a Brownian motion outside 0 and it
reflects towards the normal direction) we can define that

10.1. Definition. A process R with the same law as |B| (i.e. with the same
marginal distributions) is called the reflecting Brownian motion reflecting at 0.

We have seen that via Tanaka’s formula that

Rt = |Bt| = R0 + βt + Lt

where dβt = sgn (Bt) dBt is a Brownian motion and L is a local time, which
is increasing process and it only increases when Bt = 0. However, this also
implies L only increases when Rt = |Bt| = 0, so in a sense we don’t need the
original Brownian motion B directly at all.

In 1961 A.V. Skorohod introduced his equation that shows that this really
is the case, i.e. once we are given β we can in a unique way find R and L such
that R ≥ 0 and L is increasing and increases only when Rt = 0.

10.2. Theorem (Skorohod’s equation). Suppose y : [0, ∞) → R is a continuous
function and y(0) ≥ 0. Then there are unique pair of functions (z, a) such that

1. z(t) = y(t) + a(t) for every t

2. z(t) ≥ 0 for every t

3. a is increasing, continuous, a(0) = 0 and for every tˆ t

0
[ z(s) �= 0 ] da(s) = 0

Moreover, the function a is given by a formula

(10.3) a(t) = sup
0≤s≤t

y(s)−

Before proving this, let’s verify that once we are given β, then R and L

satisfy the three conditions. The first part is Tanaka’s formula. The second
also holds since R = |B|. The third one follows from Theorem 9.6, since it says
that for every t

0 =
ˆ t

0
|Bs| dLs =

ˆ t

0
Rs dLs =

ˆ t

0
[ Rs �= 0 ]Rs dLs

≥
ˆ t

0
[ Rs ≥ α ]Rs dLs ≥ α

ˆ t

0
[ Rs ≥ α ] dLs

for every α > 0 almost surely.This implies that for every α1, α2 > 0

0 =
ˆ t

0
[ α1 ≤ Rs < α2 ] dLs
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and since [ x > 0 ] = �
n[ (n + 1)−1 ≤ x < n

−1 ] we can deduce thatˆ t

0
[ Rs �= 0 ] dLs =

ˆ t

0
[ Rs > 0 ] dLs = 0

almost surely. This also implies that if R0 = 0, then

Lt = sup
0≤s≤t

(−βs) > 0

for every t > 0. Let’s now prove the Skorohod’s equation.

Proof. The existence. To show the existence it is enough to verify that if a

is given by the formula (10.3) and z := y + a, then (z, a) satisfy the properties
1. − 3.. The property 1. is trivially valid, since we define z so that it satisfies
1.

The 2. property is similarly simple, since

z(t) = y(t) + a(t) = y(t) + sup
s≤t

y(s)−

If y(t) ≥ 0, then since a(t) ≥ 0 we have z(t) ≥ 0. So we may assume that
y(t) < 0. Then −y(t)− = y(t) and so

y(t) + sup
s≤t

y(s)− = −y(t)− + sup
s≤t

y(s)− ≥ −y(t)− + y(t)− = 0

The 3. property has many parts. Since y is continuous, we see that a is con-
tinuous. By definition a(0) = 0 and also as a supremum over larger and larger
set, it is increasing.

Let’s prove the last part and for this let’s show first thatˆ t

0
[ z(s) > ε ] da(s) = 0.

Since z is continuous function as a sum of two continuous functions, the set
{ s ≥ 0 : z(s) > ε } is an open subset of R. Therefore, it is a countable union
of open intervals (sn, tn). This means thatˆ t

0
[ z(s) > ε ] da(s) =

∞�

n=1
(a(tn) − a(sn)).

On such an interval we have

∀s ∈ (sn, tn] : y(s) = z(s) − a(s) > ε − a(s) ≥ ε − a(tn)

since a is increasing. This implies that

∀s ∈ (sn, tn] : y(s)− ≤ (ε − a(tn))−

If a(tn) ≤ ε then y(s)− = 0 for every s ∈ (sn, tn] and

a(tn) = sup
s≤tn

y(s)− = sup
s≤sn

y(s)− = a(sn).
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If a(tn) > ε, then (ε − a(tn))− = a(tn) − ε < a(tn) and so

a(tn) = sup
s≤tn

y(s)− = max(a(sn), a(tn) − ε) = a(sn)

Thus, we always have a(tn) = a(sn) and the integral vanishes. Since this holds
for every ε > 0, we obtain that claim in the same way as we did when we
verified that the local time of Brownian motion and the reflecting Brownian
motion satisfies the same condition.

The uniqueness. Suppose (z, a) and (z�
, a

�) are two solutions to the Sko-
rohod equation. This means that b := z − z

� = a − a
�, since z − a = y = z

� − a
�.

Now since a and a
� are increasing functions by 3., the function b is of finite

variation and we may integrate with respect to it. In particular, we know that
(from the Itō formula for instance as a special case) thatˆ t

0
b(s) db(s) = 1

2(b(t)2 − b(0)2)

Since a(0) = a
�(0) = 0, we also have b(0) = 0 and therefore,ˆ t

0
b(s) db(s) = 1

2b(t)2 ≥ 0

On the other handˆ t

0
b(s) db(s) =

ˆ t

0
(z(s) − z

�(s)) db(s) =
ˆ t

0
z(s) da(s)

+
ˆ t

0
z

�(s) da
�(s) −

ˆ t

0
z

�(s) da(s) −
ˆ t

0
z(s) da

�(s)

Since a is increasing by 3. and z ≥ 0 by 2. we can estimate

0 ≤
ˆ t

0
z(s) da(s) =

ˆ t

0
[ z(s) > 0 ]z(s) da(s) = 0

where the last equality follows by the same approximation procedure for the
set [ z(s) > 0 ] as above. Therefore,ˆ t

0
z(s) da(s) +

ˆ t

0
z

�(s) da
�(s) = 0

so we are have shown that

0 ≤
ˆ t

0
b(s) db(s) = −

ˆ t

0
z

�(s) da(s) −
ˆ t

0
z(s) da

�(s) ≤ 0

since z, z
� are both positive (by 2.) and a and a

� are both increasing (by 3.)
Therefore,

0 =
ˆ t

0
b(s) db(s) = b(t)2 = (z(t) − z

�(t))2 = (a(t) − a
�(t))2

and the uniqueness follows. �


