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1. On probability and notations

We will shortly review some of the concepts from probability theory and we
will also introduce some notations we will be using.

Behind all the randomness there is (possibly huge) black box which is called
a probability space. This is the triple (Ω, F , P).

The set Ω is the set of elementary events. What it really is, is irrelavant
and most of the time it is just an infinite set Ω. The set F is a subset of all
the subsets of elementary events P(Ω) which contains the so called events. In
practice, one can usually think that all the possible subsets of the set Ω are
events, but in general this not usually the case.

In general, there are too many “elementary events” so that all the combi-
nations could be though as events. The following describes what the events
are:

1.1. Definining properties.
– the set Ω is a sure event
– if A is an event, then AC := Ω \ A is also an event (so called comple-

mentary event)
– if { Ak : k = 0, 1, 2, . . . } are events then their union

∞�

k=0
Ak = {Ak happens for some k = 0, 1, 2, . . . }

is an event
– if { Ak : k = 0, 1, 2, . . . } are events, then their intersection

∞�

k=0
Ak = {Ak happens for every k = 0, 1, 2, . . . }

is an event.

Since we will need the concepts of the general measure theory as well, we
define

1.2. Definition. Let S �= ∅ be a set and G a family of sets with the properties
as above when Ω is replaced with the set S and G . This family G is called
σ-algebra. The pair (S, G ) is called measurable space.

The set of all events F is therefore always a σ-algebra.

1.3. Definition. When F is a σ-algebra and G ⊂ F is a subset such that G

is also a σ-algebra, then the set G is called the sub-σ-algebra.

1.4. Notation. If C ⊂ F is any subset, then the smallest sub-σ-algebra G ⊃ C

is called the σ-algebra generated by C and we will denote it by σ(C ) := G .
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The probability P assigns to every event a number (the probability) from the
closed interval [0, 1]. The probability has the following properties

1.5. Definining properties.
– the probability of the sure event Ω is P ( Ω ) = 1 and the probability of

the impossible event ∅ is P ( ∅ ) = 0.
– if A is an event, the probability of the complementary event AC := Ω\A

is P
�

AC
�

= 1 − P ( A ) and
– if (Ak)k∈N are disjoint events then

P ( Ak happens for some k ∈ N ) =
�

k∈N
P ( Ak )

We note that the impossible event ∅ = ΩC has probability 0 and the probabil-
ity of the complementary event already follows from the other two conditions.
The third condition is called σ-additivity.

Therefore, the measure on a measurable space is the generalisation of this

1.6. Definition. Let (S, G ) be a measurable space. The mapping µ : G → R+

is a measure, if µ(∅) = 0 and µ is σ-additive. The triplet (S, G , µ) is called
measure space and if µ(S) = 1, it is called probability space.

We still recall the concepts of random variables and conditional probability.
First the random variables.

Random variable X is (nearly) arbitrary mapping from probability space to
state space S, but the nearly means some restrictions. In general, we need
to have some regularity in the state space or the regular events. Then the
condition is: if A ⊂ S any regular event, then the set {X ∈ A} has to be an
event in probability space Ω.

1.7. Definition. Let (Sj, Gj), for j = 1, 2, be two measurable spaces. The
function f : S1 → S2 is measurable, if {f ∈ U} ∈ G1 for every U ∈ G2.

Usually we know the σ-algebra of the state space and most of the time it will
be the Borel sets10, and therefore, we will not usually explicitly say the events
in state space. On the other hand, the space we are mapping from will quite
likely have multiple different σ-algebras, so we usually express this by saying
that f is G1-measurable.

1.8. Definition. Let (S, G) be a measurable space. We say that X is S-valued
random variable, when the mapping X : Ω → S is F -measurable.

10
In topological space the Borel sets B(S), is the σ-algebra generated by the open sets
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Next we need the expectation and conditional expectation. When random
variable X has a countable state space S = {i0, i1, . . . } ⊂ R+ then we can
define the expectation E X of the random variable X as a number (or possibly
as ∞)

(1.9) E X :=
∞�

k=0
ikP ( X = ik ) .

In general, the state space S ⊂ C is an uncountable subset of complex
numbers. This is more of Todennäköisyysteoria or the Mitta- ja integraali
course material, since in general expectation is just an integral with respect to
the probability measure P.

1.10. Known fact. If f : S → R+ is measurable and bounded, then for each
ε > 0 there is a measurable function fε : S → R+, such that 0 ≤ f − fε ≤ ε

and the state space of fε is finite11.

This simple fact is enough for the definition of the integral with respect to
measure.

1.11. Definition. Let (S, G , µ) be a measure space. Let f : S → R+ be mea-
surable. Then the integral of f with respect to measure µ isˆ

S

f(x)µ( dx) := sup{
ˆ

S

g(x)µ( dx) : g ≤ f and g is simple }.

If Ω is the probability space and X is an R+-values random variable, then the
expectation of the random variable X is

E X :=
ˆ

Ω
X(ω)P ( dω )

By linearity, the integration can be extended to complex valued functions.
We will be using the notation called Iverson brackets12. Since the indicator

functions are used in so many occasions, a simple, clear and consistent notation
is needed.

1.12. Notation. The Iverson brackets means the map from statements to num-
bers {0, 1}:

[ statement ] :=






1, if the statement is true,

0, if the statement is not true.

We will generalise this to random events A

11
A function with finite state space is called simple

12
after Kenneth Eugene Iverson, the source for this notation is Donald Erwin Knuth’s

The Art of Computer Progamming, Vol I



10 STOCHASTIC PROCESESS ON DOMAINS

1.13. Notation. If A is an event, then [ A ] is the random variable such that

[ A ](ω) := [ ω ∈ A ] =






1, if ω ∈ A,

0, if ω /∈ A,

We used this notation in the introduction and as another example of this
notation

(1.14) E [ A ] = 0 × P ( [ A ] = 0 ) + 1 × P ( [ A ] = 1 ) = P ( A ) ,

since {[ A ] = 1} = A.
In this fast review we still need the concepts of conditional probability and

expectation.

1.15. Notation. We will denote the conditional probability of the event A

given the event B as
P ( A | B ) := P ( A ∩ B )

P ( B )
This simple form of conditional probability has the same properties as the

usual probability, so it leads to conditional expectation given an event B.

1.16. Notation. Suppose X is a real valued random variable. Then

E (X | B) :=
ˆ
R

x P ( X ∈ dx | B )

This can be easily generalised to conditional expectation given a simple ran-
dom variable Y . If

Y =
�

y

y[ Y = y ]

then we can think that

(1.17) [ Y = y ]E (X | Y ) := [ Y = y ]E (X | Y = y)

Summing over the state space gives then

E (X | Y ) =
�

y

[ Y = y ]E (X | Y ) =
�

y

[ Y = y ]E (X | Y = y)

We note that now the conditional expectation is a random variable as well.
Conditioning with respect to finite σ-algebra is still easy, since we can write

the equation (1.17) as

(1.18) [ B ]E (X | G ) := [ B ]E (X | B)

for each event B ∈ G . Defining the conditional expectation in this way reveals
that E (X | G ) is G -measurable.

The general case for general σ-algebra G is somewhat trickier, since now we
have to consider the case 0/0.
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For this, we notice that the finite case can be recovered also from the follow-
ing formula (1.19)

(1.19) E ([ B ]E (X | G ) ) = E ([ B ]E (X | B) ) = E ([ B ]X) ,

for every event B ∈ G . This formula (1.19) follows from the formula (1.18)
by taking expectations and this equation has a unique G -measurable solution.
This method generalises easily. Therefore, we define

1.20. Definition. Let X be a complex value random variable, with E |X| < ∞
and let G ⊂ F be some sub-σ-algebra. We say that conditional expectation
of the random variable X given G is a random variable E (X | G ) , that is G -
measurable, E |E (X | G ) | < ∞ and which solves the equation (1.19) for every
B ∈ G .

The existance and the uniqueness of the conditional expectation is a non-
trivial thing. This follows from the Radon–Nikodym’s Theorem.

With the conditional probability we can define independence.

1.21. Definition. We say that a family of events { Aλ : λ ∈ I } is independent,
if for each finite subset {λ0, . . . , λd} ⊂ I holds

P
�

Aλd
| Aλ0Aλ1 . . . Aλd−1

�
= P ( Aλd

) .

We say that the family of random variables { Xλ : λ ∈ I } is independent, if
for every family { Bλ : λ ∈ I } in the state space, the corresponding family

{ {Xλ ∈ Bλ} : λ ∈ I }

is independent.

1.22. Notation. We say that something holds almost surely or a.s., if proba-
bility for this to hold is 1.

Later on when we condition with respect to a general random variable X,
we use the defintion

E (Y | X) := E (Y | σ(X)) ,

where
σ(X) := σ{ {X ∈ A} : A is a measurable set }

is the σ-algebra generated by the random variable X.
We still need to define stochastic process.

1.23. Definition. Let T �= ∅ and let (Xt; t ∈ T ) be a family of S-valued random
variables. We call this family S-valued stochastic processes.
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As we notice, the set T has no restrictions. However, we will usually assume
the following.

1.24. Assumption. Set of times T is either T = αN for some α > 0 or T ⊂ R
is an interval. If t ∈ T , then t is called time instance. If T = αN, we say the
time is discrete, otherwise the time is continuous.

Sometimes using indices for the time instances is not very readable. There-
fore, we use the following convention.

1.25. Notation. We may freely denote the random variable at the time in-
stance t ∈ T either by Xt or X(t).

1.26. Assumption. (1) If S is countable, then S is always P(S).
(2) In practise, the state space S is of following form

S =






{0, 1, . . . , d},

N := {0, 1, . . . },

Z := {. . . , −2, −1, 0, 1, 2, . . . },

D ⊂ Rd, kun d ∈ N+ := N \ {0}

(3) If S = D ⊂ Rd, then S is a Borel set (but usually even open or closed)
and S = B(S).

Therefore, a stochastic process is just an arbitratry family of time dependent
random variables with state space S.

1.27. Remark. As a last remark, if we give a suitable σ-algebra for the set ST of
all mappings from the set T to the set S (the so called product-σ-algebra), then
(X(t)) is a stochastic process iff X(ω) := t �→ X(t, ω) is ST -valued random
variable. The value X(ω) of the random variable from the set of times T to
the state space S is usually called either as the realisation of the stochastic
process. Also we will call it as the path.

And it is vital to note, that since the product set ST contains all the functions
and note just regular mappings there is no reason to assume that the paths
would be continuous or even measurable functions. This is one of the things
we need to think in the sequel.


