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(To be returned by Tuesday 05.05.2015)

Note. In the Problems 1-12 the j,k and n are always integers.

Note. The Problems 1-4 provide a proof of the Lévy’s Characterisation Theorem.

1. Suppose M is a 1-dimensional continuous local (Ft)-martingale. Show that for

every λ ∈ C, the process

Zλ
t := exp

(
λMt − 1

2λ
2〈M,M 〉t

)
is a local martingale. (Hint. Itō with f such that f(M, 〈M,M 〉) = Zλ).

2. Suppose X = (X1, . . . , Xd) is a d-dimensional continuous local (Ft)-martingale,

suppose X0 = 0 and suppose 〈Xj, Xk 〉t = [ j = k ]t. Show that for every f =
(f1, . . . , fd) with fj ∈ L2(R+) the process

Y f
t := exp

(
i

d∑
k=1

ˆ t

0
fk(Xs) dXk

s + 1
2

d∑
k=1

ˆ t

0
f 2
k (Xs) ds

)
is a complex and bounded martingale. (Hint. Problem 1 with suitable λ and M).

3. Suppose X is a (Ft)-adapted continuous d-dimensional process, X0 = 0 and let Y f

be the process as in Problem 2. Suppose for every f = (f1, . . . , fd) with fk ∈ L2(R+)
the process Y f is complex and bounded (Ft)-martingale. Show that

E0 [A ] exp
(
iξ · (Xt −Xs)

)
= P0 (A ) exp(−1

2 |ξ|
2(t− s))

holds for every s < t < u, every ξ ∈ Rd and every A ∈ Fs. (Hint. f =
(f1, . . . , fd) with fk(s) = ξk[ s ≤ u ])

4. Assume the same as in Problem 3. Show that for every s < t the increment

Xt−Xs is independent from Fs and show X has the same expectation and variance

as Brownian motion (i.e. show that X is (Ft)-Brownian motion).



In Problem 5-7 we look at convex functions.

5. Suppose f : R → R is a convex function. Show that if x′ < x are two points on

interval (−r/2, r/2), then

f(x′)− f(x) ≤ |x− x′|f(−r)− f(x′)
r + x

.

(Hint: in this case −r < x′ < x and then convexity)

6. Continuing with Problem 5. show that if f is convex and |f | ≤ C on the interval

(−r, r) then

|f(x)− f(x′)| ≤ 4C
r
|x− x′|

for every x, x′ ∈ (−r/2, r/2) or in other words, f is locally Lipschitz if f is locally

bounded. (Hint: estimate the fraction in Problem 5, and repeat the construction for

x > x′.)

7. Let f : R→ R be a convex function. Let ψ ∈ C∞ which is zero outside an interval

(a, b) for a < b < 0, which is positive and which integrates to 1. Define

fn(x) = n

ˆ ∞
−∞

f(x+ y)ψ(ny) dy.

Show that fn is convex. (Hint. use the definition of convexity directly).

8. Let f : R → R be a convex function and let ψ and fn be as in Problem 7. Show

that f ′n(x)→ f ′−(x).

9. Suppose t 7→ p(t, x, y) ∈ C1(R+) and (x, y) 7→ p(t, x, y) ∈ C2(D) ∩ C1(D) and

that p satisfies the heat equation
∂tp(t, x, y) = 1

24xp(t, x, y), ∀(t, x, y) ∈ (0,∞)×D ×D

∂νp(t, x, y) = 0 ∀(t, x, y) ∈ (0,∞)× ∂D ×D

p(0, x, ·) = δx ∀x ∈ D

where ∂νp = ν(x) · ∇xp(t, x, y). Show that if p is unique, then

p(t+ s, x, y) =
ˆ
D

p(t, x, z)p(s, z, y) dz



holds for every t, s > 0 and x, y ∈ D. (Hint. differentiate both sides with s and use

the uniqueness of p)

10. Suppose p is as in Problem 9. Show that

ˆ
D

p(t, x, y) dx = 1

for every t ≥ 0 and x ∈ D.

11. Suppose p is as in Problem 9 and assume that p is unique. If we know in addition

that p(t, x, y) ≥ 0 for t ≥ 0, show that p is a probability transition density of some

Feller process (Xt) with the state space D.


