Department of Mathematics and Statistics
 Stochastic processes on domains

Excercise problem sheet 6

(To be returned by Tuesday 05.05.2015)

Note. In the Problems 1-12 the j, k and n are always integers.
Note. The Problems 1-4 provide a proof of the Lévy's Characterisation Theorem.

1. Suppose M is a 1-dimensional continuous local $\left(\mathscr{F}_{t}\right)$-martingale. Show that for every $\lambda \in \mathbb{C}$, the process

$$
Z_{t}^{\lambda}:=\exp \left(\lambda M_{t}-\frac{1}{2} \lambda^{2}\langle M, M\rangle_{t}\right)
$$

is a local martingale. (Hint. Itō with f such that $\left.f(M,\langle M, M\rangle)=Z^{\lambda}\right)$.
2. Suppose $X=\left(X^{1}, \ldots, X^{d}\right)$ is a d-dimensional continuous local $\left(\mathscr{F}_{t}\right)$-martingale, suppose $X_{0}=0$ and suppose $\left\langle X^{j}, X^{k}\right\rangle_{t}=[j=k] t$. Show that for every $f=$ $\left(f_{1}, \ldots, f_{d}\right)$ with $f_{j} \in L^{2}\left(\mathbb{R}^{+}\right)$the process

$$
Y_{t}^{f}:=\exp \left(i \sum_{k=1}^{d} \int_{0}^{t} f_{k}\left(X_{s}\right) \mathrm{d} X_{s}^{k}+\frac{1}{2} \sum_{k=1}^{d} \int_{0}^{t} f_{k}^{2}\left(X_{s}\right) \mathrm{d} s\right)
$$

is a complex and bounded martingale. (Hint. Problem 1 with suitable λ and M).
3. Suppose X is a $\left(\mathscr{F}_{t}\right)$-adapted continuous d-dimensional process, $X_{0}=0$ and let Y^{f} be the process as in Problem 2. Suppose for every $f=\left(f_{1}, \ldots, f_{d}\right)$ with $f_{k} \in L^{2}\left(\mathbb{R}^{+}\right)$ the process Y^{f} is complex and bounded $\left(\mathscr{F}_{t}\right)$-martingale. Show that

$$
\mathbf{E}_{0}[A] \exp \left(i \xi \cdot\left(X_{t}-X_{s}\right)\right)=\mathbf{P}_{0}(A) \exp \left(-\frac{1}{2}|\xi|^{2}(t-s)\right)
$$

holds for every $s<t<u$, every $\xi \in \mathbb{R}^{d}$ and every $A \in \mathscr{F}_{s}$. (Hint. $f=$ $\left(f_{1}, \ldots, f_{d}\right)$ with $\left.f_{k}(s)=\xi_{k}[s \leq u]\right)$
4. Assume the same as in Problem 3. Show that for every $s<t$ the increment $X_{t}-X_{s}$ is independent from \mathscr{F}_{s} and show X has the same expectation and variance as Brownian motion (i.e. show that X is $\left(\mathscr{F}_{t}\right)$-Brownian motion).

In Problem 5-7 we look at convex functions.
5. Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ is a convex function. Show that if $x^{\prime}<x$ are two points on interval ($-r / 2, r / 2$), then

$$
f\left(x^{\prime}\right)-f(x) \leq\left|x-x^{\prime}\right| \frac{f(-r)-f\left(x^{\prime}\right)}{r+x}
$$

(Hint: in this case $-r<x^{\prime}<x$ and then convexity)
6. Continuing with Problem 5. show that if f is convex and $|f| \leq C$ on the interval $(-r, r)$ then

$$
\left|f(x)-f\left(x^{\prime}\right)\right| \leq \frac{4 C}{r}\left|x-x^{\prime}\right|
$$

for every $x, x^{\prime} \in(-r / 2, r / 2)$ or in other words, f is locally Lipschitz if f is locally bounded. (Hint: estimate the fraction in Problem 5, and repeat the construction for $x>x^{\prime}$.)
7. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function. Let $\psi \in C^{\infty}$ which is zero outside an interval (a, b) for $a<b<0$, which is positive and which integrates to 1 . Define

$$
f_{n}(x)=n \int_{-\infty}^{\infty} f(x+y) \psi(n y) \mathrm{d} y
$$

Show that f_{n} is convex. (Hint. use the definition of convexity directly).
8. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and let ψ and f_{n} be as in Problem 7. Show that $f_{n}^{\prime}(x) \rightarrow f_{-}^{\prime}(x)$.
9. Suppose $t \mapsto p(t, x, y) \in C^{1}\left(\mathbb{R}_{+}\right)$and $(x, y) \mapsto p(t, x, y) \in C^{2}(D) \cap C^{1}(\bar{D})$ and that p satisfies the heat equation

$$
\begin{cases}\partial_{t} p(t, x, y)=\frac{1}{2} \triangle_{x} p(t, x, y), & \forall(t, x, y) \in(0, \infty) \times D \times D \\ \partial_{\nu} p(t, x, y)=0 & \forall(t, x, y) \in(0, \infty) \times \partial D \times \bar{D} \\ p(0, x, \cdot)=\delta_{x} & \forall x \in \bar{D}\end{cases}
$$

where $\partial_{\nu} p=\nu(x) \cdot \nabla_{x} p(t, x, y)$. Show that if p is unique, then

$$
p(t+s, x, y)=\int_{\bar{D}} p(t, x, z) p(s, z, y) \mathrm{d} z
$$

holds for every $t, s>0$ and $x, y \in D$. (Hint. differentiate both sides with s and use the uniqueness of p)
10. Suppose p is as in Problem 9. Show that

$$
\int_{\bar{D}} p(t, x, y) \mathrm{d} x=1
$$

for every $t \geq 0$ and $x \in \bar{D}$.
11. Suppose p is as in Problem 9 and assume that p is unique. If we know in addition that $p(t, x, y) \geq 0$ for $t \geq 0$, show that p is a probability transition density of some Feller process $\left(X_{t}\right)$ with the state space \bar{D}.

