Department of Mathematics and Statistics

Stochastic processes on domains

Excercise problem sheet 2

(To be returned by Friday 20.02.2015)

Note. In the Problems 1-10 the j, k and n are always integers.

1. Let $\left(P_{t, x}\right)$ be as in Lemma 3.14 in Lecture notes (page 23). Let

$$
\mu_{\left(t_{1}, \ldots, t_{n}\right)}^{x}\left(A_{1} \times \cdots \times A_{n}\right)=\int_{A_{1}} P_{t_{1}, x}\left(\mathrm{~d} x_{1}\right) \cdots \int_{A_{n}} P_{t_{n}-t_{n-1}, x_{n-1}}\left(\mathrm{~d} x_{n}\right)
$$

for every $x \in S$, for every $n \in \mathbb{N}_{+}$, for every $t_{1}<\cdots<t_{n}$ and for every $A_{1}, \ldots, A_{n} \in$ \mathscr{S}. Let $\left(A_{n}\right) \subset \mathscr{S}$ be a sequence of sets in \mathscr{S}. Define $B_{k, j}, C_{k, j} \in \mathscr{S}$ as $\left[B_{k, j}\right]=$ $\left[A_{k}\right][k \neq j]+[S][k=j]$. and $\left[C_{k, j}\right]=\left[A_{k}\right][k<j]+\left[A_{k-1}\right][k>j]$. Let $\pi_{j, n}\left(t_{1}, \ldots, t_{n}\right)=\left(s_{1}, \ldots, s_{n-1}\right)$ where $s_{k}=t_{k}[k<j]+t_{k-1}[k>j]$. Show that the measures $\mu_{\left(t_{1}, \ldots, t_{n}\right)}^{x}$ are consistent, i.e.
i) show that

$$
\mu_{\left(t_{1}, \ldots, t_{n}\right)}^{x}\left(B_{1, j} \times \cdots \times B_{n, j}\right)=\mu_{\pi_{j, n}\left(t_{1}, \ldots, t_{n}\right)}^{x}\left(C_{1, j} \times \cdots \times C_{n-1, j}\right)
$$

for every $n \in \mathbb{N}$, for every $1 \leq j \leq n$.
2. Show that the transition probability operator of Brownian motion $P_{t}^{(B)}$ (see pages 21-22) satisfies

$$
\lim _{t \rightarrow 0} P_{t}^{(B)} f(x)=f(x)
$$

for every $x \in \mathbb{R}^{d}$ and every bounded and continuous f. (Hint: change of variables so that t appears only in the argument of f and dominated convergence).
3. Show that the transition probability operator of Brownian motion $P_{t}^{(B)}$ (see 2 . above) satisfies

$$
\lim _{t \rightarrow 0}\left\|P_{t}^{(B)} f-f\right\|=\lim _{t \rightarrow 0} \sup _{x \in \mathbb{R}^{d}}\left|P_{t}^{(B)} f(x)-f(x)\right|=0
$$

for every $x \in \mathbb{R}^{d}$ and every $f \in C_{\infty}\left(\mathbb{R}^{d}\right)$. (Hint: show that there is large R such that outside ball of radius R the difference is small and 2.)

Some theory. Suppose $\left(X_{t}\right)$ is a Markov process and suppose there exists a shift operators $\theta_{s}: \Omega \rightarrow \Omega$ for every $s>0$ with the property $X_{t} \circ \theta_{s}(\omega)=X_{t}\left(\theta_{s}(\omega)\right):=$ $X_{t+s}(\omega)$ for every $t \geq 0$ and for every $\omega \in \Omega$. This way we can easily express that general idea of forgetting the past and the restarting the clock.
Note. In Problems 4, 5, 6 and 7 the triplet $\left(X_{t}, \mathscr{F}_{t},\left\{\mathbf{P}_{x}\right\}\right)$ is a Markov process. The algebra \mathscr{A}_{∞} and the σ-algebre \mathscr{F}_{∞} are defined in the proof of Lemma 3.14 on page 24. The Dynkin system is defined in the proof of Lemma 3.14 on page 25.
4. Let $s<t_{1}<\cdots<t_{n}$. Show that the time stationary Markov property for $\left(X_{t}\right)$ with respect to $\left(\mathscr{F}_{t}\right)$ implies that

$$
\mathbf{E}_{x}\left(f_{1}\left(X_{t_{1}}\right) \ldots f_{n}\left(X_{t_{n}}\right) \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}}\left(f_{1}\left(X_{t_{1}-s}\right) \ldots f_{n}\left(X_{t_{n}-s}\right)\right)
$$

for every $x \in S$ and for every f_{j} bounded and measurable function with $j=1, \ldots, n$. You can assume that this is know for $n=1$.
5. Let $0<t_{1}<\cdots<t_{n}$ and let $A=\left\{X_{t_{1}} \in A_{1}, \ldots, X_{t_{n}} \in A_{n}\right\} \in \mathscr{A}_{\infty}$. Show that the time stationary Markov property for $\left(X_{t}\right)$ with respect to $\left(\mathscr{F}_{t}\right)$ implies that

$$
\begin{equation*}
\mathbf{E}_{x}\left([A] \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}}[A] \tag{0.1}
\end{equation*}
$$

for every $x \in S$. (Hint: try writing $[A] \circ \theta_{s}$ as a form of Problem 4. from the above definition of the shift operator)
6. Let \mathscr{G} be the family of sets

$$
\mathscr{G}=\left\{A \in \mathscr{F}_{\infty}: A \text { satifies the identity (0.1) }\right\}
$$

Show that \mathscr{G} is a Dynkin system and that it coincides with \mathscr{F}_{∞}. (Hint: see proof of Lemma 3.14).
7. Let Z be a \mathscr{F}_{∞}-measurable bounded random variable. Show that the time stationary Markov property for $\left(X_{t}\right)$ with respect to $\left(\mathscr{F}_{t}\right)$ implies that

$$
\mathbf{E}_{x}\left(Z \circ \theta_{s} \mid \mathscr{F}_{s}\right)=\mathbf{E}_{X_{s}} Z
$$

for every $s \geq 0$. (Hint: first simple Z, then the general case).
8. Suppose Z is an integrable real valued random variable and $\left(\mathscr{F}_{t}\right)$ is a filtration. Show that a process $\left(X_{t}\right)$ which is defined as

$$
X_{t}:=\mathbf{E}\left(Z \mid \mathscr{F}_{t}\right)
$$

is a martingale with respect to the filtration $\left(\mathscr{F}_{t}\right)$.
9. Let τ_{1} and τ_{2} be $\left(\mathscr{F}_{t}\right)$-stopping times. Show that

$$
\tau_{1} \wedge \tau_{2}, \quad \tau_{1} \vee \tau_{2}, \quad \text { and } \quad \tau_{1}+\tau_{2}
$$

are $\left(\mathscr{F}_{t}\right)$-stopping times. (Hint: try to express the conditions as unions and intersections of conditions involving only τ_{1} and τ_{2}. Also discrete time versions are fine.)
10. Show that the \mathscr{F}_{τ} is a σ-algebra, when τ is a $\left(\mathscr{F}_{t}\right)$-stopping time.
11. Let $\left(\mathscr{F}_{t}\right)$ be a filtration. Show that the $\left(\mathscr{F}_{t^{+}}\right)$is right-continuous filtration.
12. Show that a random variable τ is a ($\left.\mathscr{F}_{t^{+}}\right)$-stopping time if and only if for every $t>0$ it holds that $\{\tau<t\} \in \mathscr{F}$. (Hint. \Longrightarrow consider events $\{\tau \leq t-1 / k\}$ and \Longleftarrow consider events $\{\tau<t+1 / k\}$.)

