
Probabilistic Approximations

University of Helsinki
Department of mathematics and statistics
Spring 2015

The aim of this mini-course is to provide an introduction to the combination of two probabilistic
techniques. First the Stein’s method (1972). This is a collection of probabilistic techniques which allow
to compare probability distributions by means of the properties of differential operators (for more
information, see [7]). Second the Malliavin calculus (1973). It’s an infinite dimensional differential
calculus (for a detailed text, see the book [15]). Interestingly, the aforementioned techniques can
be sweetly combined in order to provide CLTs for non-linear functionals of an infinite dimensional
isonormal Gaussian process. As a substantial result, we will proof an astonishing discovery (this is of one
the main objectives of the course) by Nualart-Peccati (2005)1 known nowadays as the fourth moment
theorem, stating that, for a sequence Fn of random variables living in a fixed Wiener chaos such that
IE(F 2

n)→ 1, the sequence Fn converges in distribution towards a standard Gaussian distribution if and
only if IE(F 4

n)→ 3(= IE(N4), where N ∼ N (0, 1)). This new and efficient methodology, i.e. combining
the Malliavin calculus together with the Stein’s method, in literatures, is called the Malliavin-Stein
approach. For an exposition of this fertile line of research, one can consult the following constantly
updated webpage:

https://sites.google.com/site/malliavinstein/home

for many applications of Malliavin-Stein approach, as well as for asymptotic results that are
somehow connected with the fourth moment theorem. Moreover, the monograph [13] provides a quite
detailed introduction to the topics that will be discussed in the course.
The plan of the course is the following. Lecture 1 : Stein’s method, Gaussian measure, stochastic
integration and chaotic decompositions, Malliavin calculus. Lecture 2 : combination of the Stein’s
method with the Malliavin calculus and CLTs on the Wiener chaos. Lecture 3 : applications,
new directions (powerful Markov triplet approach [1, 2]) and generalizations (non-Gaussian target
distributions [14, 3]) as well as some important open problems if time permits.

Part I

Gaussian approximation

1 Introduction

Typical example. Take W = {Wt, t ≥ 0} a standard BM started from zero. This means that W is a
centered Gaussian process such that W0 = 0, W has continuous paths, and IE(WsWt) = s ∧ t for every
t, s ≥ 0. A result by Jeulin (1979) says: ∫ 1

0

W 2
t

t2
dt =∞ a.s. (1)

(Note that this is a property at around 0). Also, notice that for all ε > 0 we have

Bε =

∫ t

ε

W 2
t

t2
dt <∞

Remark 1. Define a new process Ŵ by Ŵ0 = 0 and Ŵu = uW1/u for u > 0. It can be easily shown

that Ŵ is a standard Brownian motion, and using the change of variable u = 1/t, it now follows that

1 Nualart, D., Peccati, G. (2005) Central limit theorems for sequences of multiple stochastic integrals. Ann.
Probab. Volume 33, Number 1, 177-193.
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the property (1) is equivalent to the following statement:∫ ∞
1

W 2
t

t2
dt =∞ a.s.

By direct computations, one can show that (check it!)

IE(Bε) = − log ε, VarBε ≈
√
−4 log ε, as ε→ 0.

By setting

B̃ε =
Bε + log ε√
−4 log ε

, ε ∈ (0, 1)

one can ask the following natural question:

Problem 1. Prove that, as ε→ 0, we have B̃ε
law→ N (0, 1).

Later on, we will present two different solutions to the above problem. One, using the classical
method of moments/cumulant, and second, using the techniques introduced in this course. It will
turn out that using the second approach, we are not only able to give a fruitful solution to the above
problem but also we can provide the following quantitative bound: there exist constants C1 and C2

such that
C1(
√
− log ε)−1 ≤ dKol(B̃ε,N (0, 1)) ≤ C2(

√
− log ε)−1.

2 Elements of Stein’s method

The typical route is the following (a) Stein’s lemma, then (b) develop a heuristic, followed by (c) an
equation whose solutions (and properties thereof) will lead to bounds.

2.1 Moments/Cumulants

During the lectures, the notion of cumulant is sometimes used. Recall that, given a random variable
Y with finite moments of all orders, i.e. IE|Y |r < ∞ for all r ≥ 1, and with characteristic function
ϕY (t) := IE(eitY ), t ∈ IR, one define the sequence of cumulants of Y , noted as {κr(Y ) : r ≥ 1}, as

κr(Y ) = (−i)r d
r

dtr
logϕY (t)

∣∣∣
t=0

, r ≥ 1.

For instance,

κ1(Y ) = IE(Y )

κ2(Y ) = Var(Y )

κ3(Y ) = IE(Y 3)− 3IE(Y 2)IE(Y ) + 2IE(Y )3

κ4(Y ) = IE(Y 4)− 4IE(Y )IE(Y 3)− 3IE(Y 2)2 + 12IE(Y )2IE(Y 2)− 6IE(Y )4.

In particular, if IE(Y ) = 0, then κ3(Y ) = IE(Y 3) and κ4(Y ) = IE(Y 4) − 3IE(Y 2)2. Recall that
for a standard Gaussian random variable N ∼ N (0, 1), we have logϕN (t) = −t2/2, and therefore
κ1(N) = IE(N) = 0, κ2(N) = Var(N) = 1, and κr(N) = 0 for all r ≥ 3.

Remark 2. The following relation shows that moments can be recursively defined in terms of cumulants
(and vice-versa): fix r = 1, 2, · · · and assume that IE|Y |r+1 <∞, then

IE(Y r+1) =
r∑
s=0

(
s

r

)
κs+1(Y )IE(Y r−s). (2)

The reader is referred to [17, Chapter 3] for a proof of relation (2), as well as, for a self-contained
presentation of more properties of cumulants and for several combinatorial characterizations.
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Exercise 1. Let N ∼ N (0, 1). (a) Show that the moments sequence {mr(N) := IE(N r) : r ≥ 1} of
N satisfies in the following recursion formula

mr+1(N) = rmr−1(N), r ≥ 1. (3)

(b) Using induction and part (a) to prove that

mr(N) =

{
(2k − 1)!! if r = 2k

0 otherwise.

where the notation double factorial (2k − 1)!! = (2k − 1)× (2k − 3)× · · · × 3× 1.

The following lemma is a fundamental key to provide CLTs using the method of moments/cumulants.

Lemma 1. The law of the random variable N ∼ N (0, 1) is determined by its moments/cumulants,
i.e if X be a random variable such that IE(Xr) = IE(N r) [or equivalently κr(X) = κr(N)] for all r ≥ 1,

then X
law
= N .

Proof. Let law(N) = γ and law(X) = ν. Then, it is enough to show that their Fourier transforms are
the same:

∫
IR e

itxγ(dx) =
∫

IR e
itxν(dx), for every t ∈ IR. Since mr(N) = mr(X) for all r ≥ 1, using

Taylor’s formula, triangle inequality, the following elementary inequality∣∣∣eitx − r∑
k=0

(itx)k

k!

∣∣∣ ≤ |tx|r+1

(r + 1)!

and Cauchy-Schwarz inequality to write

∣∣∣ ∫
IR
eitxγ(dx)−

∫
IR
eitxν(dx)

∣∣∣ ≤ ∫
IR

∣∣∣eitx − r∑
k=0

(itx)k

k!

∣∣∣γ(dx)

+

∫
IR

∣∣∣eitx − r∑
k=0

(itx)k

k!

∣∣∣ν(dx)

≤
(∫

IR

|tx|2r+2

(r + 1)!2
γ(dx)

) 1
2

+
(∫

IR

|tx|2r+2

(r + 1)!2
ν(dx)

) 1
2

= 2

√
|t|2r+2m2r+2(N)

(r + 1)!2
,

for every r ≥ 1. Now, using Stirling formula r! ∼
√

2πr( re)r as r →∞, and Lemma 2.1, one can infer
that

lim
r→∞

|t|2r+2m2r+2(N)

(r + 1)!2
= 0.

b) The following lemma known as Stein’s lemma provides a useful characterization of one-dimensional
standard Gaussian distributions.

Lemma 2. (Stein’s lemma) For a real-valued random variable Y we have Y ∼ N (0, 1) if, and only
if for every f : IR→ IR such that E|f ′(N)| <∞, we have

IE(f ′(Y )− Y f(Y )) = 0. (4)
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Proof. The sufficient condition is trivial. For the other way, note that for all polynomials the relation
(4) works. But this means that

IE(Y r+1) = rIE(Y r−1).

Now, use Exercise 2.1 and Lemma 1. Another way is to take f complex exponential and therefore
determine the characteristic function of Y (do it!).

Theorem 1. (The method of moments/cumulants) Let F be a real-valued random variable whose
law is determined by its moments/cumulants. Assume that {Fn}n≥1 be a sequence of random variables
in which each Fn has all moments/cumulants such that IE(F rn)→ IE(F r), for every r ≥ 1. Then Fn
converges in distribution towards F .

b) Heuristic. Suppose that for “many” functions f we have

IE(f ′(Y )− Y f(Y )) ≈ 0.

Can we conclude that Y is close – in some sense – to N? This is, a priori, not clear since there are
many ways to characterize N and not all lead to a nice theory of probabilistic approximation. We will
consider a very strong measure of closeness in terms of the total variation (TV) distance.

2.2 Distances between probability measures

(i) The Kolmogorov distance: Let F and G be two IRd, (d ≥ 1) valued random variables. Let

HKol = {h : IRd → IR : h(x1, · · · , xd) = Πd
k=11(−∞,zk](xk), for some z1, · · · , zd ∈ IR}.

The Kolmogorov distance between the laws of random variables F and G, noted as dKol(F,G), define
as

dKol(F,G) = sup
h∈HKol

∣∣∣IE(h(F ))− IE(h(G))
∣∣∣

= sup
z1,··· ,zd∈IR

∣∣∣IP(F ∈ (−∞, z1]× · · · × (−∞, zd])

− IP(G ∈ (−∞, z1]× · · · × (−∞, zd])
∣∣∣.

In particular (d = 1): dKol(F,G) = supz∈IR

∣∣∣IP(F ≤ z) − IP(G ≤ z)
∣∣∣. Note that always dKol(F,G) ≤

dTV(F,G).
(ii) The total variation distance:

HTV = {h : IRd → IR : h = 1B for someB ∈ B(IRd)}.

dTV(F,G) = sup
h∈HTV

∣∣∣IE(h(F ))− IE(h(G))
∣∣∣

= sup
B∈B(IRd)

∣∣∣IP(F ∈ B)− IP(G ∈ B)
∣∣∣.

(iii) The Wasserstein distance:

HW = {h : IRd → IR : ‖h‖lip ≤ 1}, ‖h‖lip := sup
x 6=y∈IRd

|h(x)− h(y)|
‖x− y‖IRd

.

dW(F,G) = sup
h∈HW

∣∣∣IE(h(F ))− IE(h(G))
∣∣∣.
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Exercise 2. Let d ≥ 1. Show that the topologies induced by three distance dKol, dTV and dW on
the set of probability measures on IRd are strictly stronger than the topology of the convergence in
distribution, i.e.

dKol,TV,W(Fn, F )→ 0 =⇒ Fn
law→ F.

Remark 3. The Fortet–Mourier distance (or bounded Wasserstein distance: dFM(F,G) = suph∈HFM

∣∣∣IE(h(F ))−

IE(h(G))
∣∣∣, where HFM = {h : IRd → IR : ‖h‖∞ + ‖h‖lip ≤ 1}. The dFM distance metrizes the conver-

gence in distribution, i.e.

dFM(Fn, F )→ 0 ⇐⇒ Fn
law→ F.

c) Stein’s equation for normal approximation. Let N ∼ N (0, 1). Consider a function h : IR→
[0, 1] so that IE|h(N)| <∞. The Stein equation associated to the test function h is

f ′(x)− xf(x) = h(x)− IEh(N) (5)

which is taken to hold at all x ∈ IR. A solution is a function fh whose derivative is a.e. defined and
for which there exists a version which satisfies (5). In particular we always speak of f ′ in the weak
sense. For a moment, assume that fh is a solution of (5). Then, by taking expectation of both sides
(5) (together with plugging in x = Y , where Y is a real-valued random variable):

IEh(Y )− IEh(N) = IE(f ′(Y )− Y f(Y )).

Therefore, for any integrable random variable Y :

sup
h∈HTV

∣∣∣IEh(Y )− IEh(N)
∣∣∣ = sup

fh,h∈HTV

∣∣∣IE(f ′h(Y )− Y fh(Y ))
∣∣∣. (6)

Note that the expression in the right hand side in above does not involved the target random
variable N at all!

Proposition 1. For every c ∈ IR, set

fc,h(x) = cex
2/2 + ex

2/2

∫ x

−∞
(h(u)− IEh(N))e−u

2/2du;

Then, fc,h is a solution of the Stein’s equation. Moreover, the unique solution satisfying in limn→∞ e
−x

2

2 f(x) =
0 is given by fh = f0,h, i.e. c = 0.

Proof. Note that, the Stein’s equation can be written as

e
x2

2
d

dx

(
e−

x2

2 f(x)
)

= h(x)− IEh(N).

Now, take integral of both sides. For the second part, using dominated convergence theorem (DCT)
we have

lim
|x|→∞

∫ x

−∞
(h(u)− IEh(N))e−u

2/2du = 0.

Recall that IE|h(N)| <∞.

The gist of the method is that it will transform the study of a non-smooth object (the TV distance)
in terms of smooth objects (the solutions f0,h). This happens through the following lemma.

Lemma 3. Let h : IR→ [0, 1]. Then the solution fh of the Stein’s equation associated to h satisfying
in

‖fh‖∞ ≤
√
π/2 and ‖f ′h‖∞ ≤ 2

(the Stein’s magic factors).

5



Note that these bounds are uniform over the whole family h. An immediate consequence of Lemma 3
is the following.

Corollary 1. Let Y be a real-valued random variable such that IE|Y | <∞. Then

dTV(Y,N) ≤ sup
f∈FTV

∣∣∣IE(f ′(Y ))− IE(Y f(Y ))
∣∣∣,

where FTV = {f : ‖f‖∞ ≤
√
π/2 and ‖f ′‖∞ ≤ 2}.

Let to stress that we have explicitly transformed the non-smooth problem, the lhs of (6), into a smooth
one, the rhs of (6). Moreover, the bounds in Lemma 3 are independent of the target Gaussian random
variable N , and just depends on (a functional of) a nice Y ! Once we have this, is it true that the rhs is
easier to evaluate than the lhs? This is Stein’s intuition and it turns out to be true in many different
and complicated cases. There are several techniques for working out this quantity : exchangeable
pairs (Stein, 1972); dependency graphs; zero-bias transforms (Goldstein - Reinert 1995). Here we are
going to develop tools to evaluate the Stein bound when Y is a (sufficiently regular) functional of a
infinite-dimensional Gaussian field (e.g. the Brownian motion, the fractional Brownian motion,...).
The answer for this is through Malliavin calculus.

Proof. (of Lemma 3) First remark that |h(u)− IEh(N)| ≤ 1. Then we easily get (with Φ the Gaussian
CDF)

|fh(x)| ≤ ex2/2 min{Φ(x), 1− Φ(x)}

= ex
2/2

∫ ∞
|x|

e−y
2/2dy := S(x).

A direct computation shows that S attains its maximum at x = 0, and also S(0) =
√
π/2. Hence,

|fh| ≤ S(0) =
√
π/2, and the first claim follows.

For the second bound, we can simply write out f ′h, to get

|f ′h(x)| =
∣∣∣h(x)− IEh(N) + xex

2/2

∫ x

−∞
(h(u)− IEh(N))e−u

2/2du
∣∣∣

≤ 1 + |x|ex2/2
∫ ∞
|x|

e−y
2/2dy = 2.

Exercise 3. Stein’s bound for the Kolmogorov distance (a) For every z ∈ IR, write fz = f1(−∞,z] ,
that is, fz is the solution of the Stein’s equation associated to the indicator function h = 1(−∞,z]. Also,
Φ stands for the cumulative distribution function of a N (0, 1) random variable. Show that

fz(x) =


√

2πe
x2

2 Φ(x)[1− Φ(z)] if x ≤ z,
√

2πe
x2

2 Φ(z)[1− Φ(x)] if x ≥ z.

(b) Prove that, for every x ∈ IR, fz(x) = f−z(−x) (this implies that, in the estimates below, one
can assume that z ≥ 0 without loss of generality).
(c) Compute the derivative d

dx [xfz(x)], and deduce that the mapping x 7→ xfz(x) is increasing.
(d) Show that limx→−∞ xfz(x) = Φ(z)− 1 and also that limx→+∞ xfz(x) = Φ(z).
(e) Use part (a) to prove that

f ′z(x) =

[
√

2πxe
x2

2 Φ(x) + 1][1− Φ(z)] if x < z,

[
√

2πxe
x2

2 (1− Φ(x))− 1]Φ(z) if x > z.

(f) Use part (e) in order to prove that

0 < f ′z(x) ≤ zfz(x) + 1− Φ(z) < 1, ifx < z,
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and

−1 < zfz(x)− Φ(z) ≤ f ′z(x) < 0, ifx > z

to deduce that ‖f ′z‖∞ ≤ 1.
(g) Use part (f) to show that x 7→ fz(x) attains its maximum in x = z. Compute fz(z) and prove that

fz(z) ≤
√

2π
4 for every z ∈ IR, to complete a proof of the following theorem.

Theorem 2. Let z ∈ IR. Then the function fz is such that ‖fz‖∞ ≤
√

2π
4 and ‖f ′z‖∞ ≤ 1. Therefore,

for N ∼ N (0, 1), and for any integrable random variable F ,

dKol(F,N) ≤ sup
f∈FKol

|IE[f ′(F )]− IE[Ff(F )]|,

where FKol = {f : ‖f‖∞ ≤
√

2π
4 , ‖f ′‖∞ ≤ 1}.

Part II

Gaussian measures and chaos

Take (Ω,F , IP) an underlying probability space.

2.3 Definition and first properties

We first define Gaussian measures.

Definition 1. Take (A,A, µ) a measure space (Polish, i.e. metric, separable and complete) with µ
positive, σ-finite and non-atomic measure. A Gaussian measure over (A,A) with control µ is a centered
Gaussian family

G = {G(B); µ(B) <∞}

such that
IE (G(B)G(C)) = µ(B ∩ C), µ(B) <∞ andµ(C) <∞.

A couple of remarks : (i) If A = IR+ and µ is the Lebesgue measure then Wt = G[0, t] is, up to
continuity, a Brownian motion (because then IEWtWs = min(t, s)); (ii) one can prove that if {Bi}i≥1

is a sequence of disjoint sets such that µ(
⋃
iBi) <∞ then

G(
⋃
i

Bi) =
∑
i

G(Bi)

with convergence in L2(Ω).

Proposition 2. G, in fact, exists.

Proof. Take {ei}i≥1 an ONB of L2(µ). Then for all f ∈ L2(µ) we have f =
∑
〈f, ei〉ei with the L2(µ)

scalar product. Next take {ξi}i≥1 a sequence of i.i.d. N (0, 1) random variables and construct

X(f) =
∑
ige1

ξi〈f, ei〉.

Then {X(f); f ∈ L2(µ)} is a centered Gaussian family such that IE(X(f)X(g)) = 〈f, g〉 (easy exercise
through Parseval’s identity, check it!). We are then ready to conclude, since

G(B) = X(1B), µ(B) <∞

is a Gaussian measure with control measure µ.
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A final remark is that GM are not probability measures! More precisely:

Proposition 3. The mapping
B 7→ G(B)(ω)

is not a signed measure for a fixed ω.

Proof. Take a Borel set B with µ(B) <∞. Since µ is non-atomic, we observe that∫
A

∫
A

1B×B(x, y)1x=yµ(dx)µ(dy) = Diagµ(B) = 0.

But, on the other hand side, one can easily show that∫
A

∫
A

1B×B(x, y)1x=yG(dx)G(dy) := DiagG(B) = µ(B).

(Note that the integration wrt G is shaky but will be proven rigorously later on). Indeed here a
standard way to construct DiagG(B) is through

lim
n→∞

kn∑
i=1

G(B
(n)
i )G(B

(n)
i ) = lim

n

∑
G(B

(n)
i )2

where {B(n)
i , i = 1, . . . , kn} is a sequence of partitions of B such that supµ(B

(n)
i ) → 0, and one can

show that (check it!), for any partition,

IE
(∑

G(B
(n)
i )2 − µ(B)

)2 → 0.

In other words G charges, in a nontrivial way, the diagonal and hence cannot be a signed measure.

Remark 4. In the case, when A = IR+, µ is the Lebesgue measure, the statement B 7→ G(B)(ω) is
a singed measure on a set of positive probability will imply that the mapping t 7→ Wt := G[0, t] is
of bounded variation on a set of positive probability in which is a contradiction with the following
well-known fact that ∑

0≤ti≤t
(W

t
(n)
i

−W
t
(n)
i−1

)2 → t.

2.4 Single integrals

We want for any f ∈ L2(µ) to define an object of the type

I1(f) :=

∫
A
f(x)G(dx)

To this end, we introduce a collection of ”simple integrands”

E(µ) = {f(x) =
N∑
j=1

cj1Bj , µ(Bj) <∞}

which has the density property Ē(µ) = L2(µ). Then we can define, for any simple integrand f

I1(f) :=

N∑
j=1

cjG(Bj).

With this in hand it is easy to show that, for all simple f, g we have

IE(I1(f)I1(g)) = 〈f, g〉L2(µ), IEI1(f) = 0.
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Now, it is straightforward to extend to all functions f ∈ L2(µ). Let f ∈ L2(µ), then there exists a
sequence of simple functions {fn}n≥1 such that ‖fn − f‖ → 0 and {I1(fn)} is Cauchy in L2(IP). One
therefore sets

I1(f) = lim I1(fn)

the limit being taken in L2(IP) and being independent of the choice of the sequence.

Remark 5. For all f, g ∈ L2(µ) we have

IEI1(f) = 0 and IE (I1(f)I1(g)) = 〈f, g〉L2(µ).

Definition 2 (Wiener, 1938). The space H1 = {I1(f) : f ∈ L2(µ)} is the first Wiener chaos of G.
Note that, since everything is obtained through centered Gaussian random variables, so H1 is a centered
Gaussian family. It therefore cannot be suffice to describe all square integrable functionals measurable
wrt G.

2.5 Multiple integrals

Let p ≥ 2. Consider L2(µp) the space of square integrable functions of p arguments on the space
(Ap,Ap, µp). We then define the simple functions

E(µp) = Simple integrands

=

f =
n∑

i1,··· ,ip=1

ai1···ip1Bi1 ⊗ · · · ⊗ 1Bip : Bik ∩Bil = ∅ ∀ k 6= l and µ(Bij ) <∞

 ,

and more importantly the coefficients ai1···ip = 0 if any of two indices i1, · · · , ip are equal, i.e.
∃ k 6= l such that ik = il.

For any f ∈ E(µp) then we define the multiple Wiener-Itô integral of order p of f ∈ E(µp) w.r.t. G
through

Ip(f) =

n∑
i1,··· ,ip=1

ai1···ipG(B1) . . . G(Bd). (7)

Now, the main properties are gathered in the following exercise.

Exercise 4. (a) Show that for f ∈ E(µp), the definition of Ip(f) does not depend on a particular
representation of f .
(b) Ip : E(µp)→ L2(Ω, IP) is a linear map.
(c) Ip(f) = Ip(f̃), where f̃ is the symmetrization of f , i.e.

f̃(x1, · · · , xp) = 1/p!
∑
σ

f(xσ(1), · · · , xσ(p))

where the sum runs over all permutations σ of {1, · · · , p}.

(d) For all f ∈ E(µp) and g ∈ E(µq) we have

IE(Ip(f)) = 0 (centered)

and

IE(Ip(f)Iq(g)) =

{
0 if p 6= q,

p!〈f̃ , g̃〉L2(µp)

(orthogonality / isometry)

(e) Esym(µp)
‖ ‖L2(µp) = L2

sym(µp), where here ”sym” stands for symmetrized functions. Hence, deduce
that the mapping Ip can be continuously extended to L2

sym(µp).
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Now let f ∈ L2
sym(µp); then there exists a sequence {fn} ⊂ Esym(µp) such that fn → f in L2(µp).

Therefore, we define

Ip(f) := lim
n→∞

Ip(fn) (8)

the limit being taken in L2(IP) and being independent of the chosen sequence.

Definition 3. The Wiener chaos of order p associated with G, denoted by Hp, is defined as

Hp := v.s.
{
Ip(f) ; f ∈ L2

sym(µp)
}
.

Moreover, the three properties (centered, isometry and orthogonality) extend to the whole class Hp.
Note that we write I0(c) = c; c ∈ IR

Remark 6. If A = [0, T ], µ is Lebesgue and Wt = G([0, t]) is a Brownian motion, then for symmetric
f ∈ L2([0, T ]p)

Ip(f) = p!

∫ T

0
dWt1

∫ t1

0
dWt2 . . .

∫ tp−1

0
dWtpf(t1, . . . , tp).

The random variables in Definition are fundamental: they allow for example to write any G-square
integrable random variable as an infinite series (this will be treated later on). The following remark
provides some crucial properties of random variables living in a Wiener chaos.

Remark 7. (a) Shigekawa 2 proves that if F =
∑M

p=0 Ip(fp) then the law of F has a density w.r.t.
the Lebesgue measure.
(b) (Nelson, 1968) Hp is hypercontractive, i.e. ∀q > 0 there exists Cp,q > 0 such that for all F ∈ Hp we
have

IE(|F |q)1/q ≤ Cp,q IE(F 2)1/2. (9)

In particular all these Lp topologies are equivalent on the Wiener chaoses.

2.6 Multiplication formulae & Chaotic expansion

The problem. What is Ip(f)× Iq(g)?

Definition 4 (Contraction). For f ∈ L2
sym(µp) and g ∈ L2

sym(µq) for p, q ≥ 1 we define for all
r = 0, . . . ,min(p, q)

f ⊗ g(x1, x2, . . . , , xp+q−2r)

=

∫
Ar
f(ar, x1, . . . , xp−r)g(ar, xp−r+1, . . . , xp+q−2r)µ(da1, · · · , dar).

Here ar = (a1, · · · , ar).

Example 1. If p = q = r then f ⊗p g = 〈f, g〉L2(µp).

Example 2. If r = 0 then

f ⊗0 g(x1, . . . , xp+q) = f ⊗ g = f(x1, . . . , xp)g(xp+1, . . . , xp+q).

Example 3. If p = q = 2 and r = 1 then

f ⊗1 g(x, y) =

∫
A
µ(da)f(a, x)g(a, y).

2Shigekawa, I. Derivatives of Wiener functionals and absolute continuity of induced measures. J. Math. Kyoto Univ.
20 (1980), no. 2, 263-289.
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Remark 8.
‖f ⊗r g‖2L2(µp+q−2r) ≤ ‖f‖

2
L2(µp)‖g‖

2
L2(µq) <∞.

Note that if p = q = r this is just the CS inequality.

Remark 9. In general f ⊗r q is not symmetric, so we define the symmetrization

f̃ ⊗r g(x1, . . . , xp+q−2r) =
∑

σ∈Sp+q−2r

f ⊗r g(xσ(1), . . . , xσ(p+q−2r))

(p+ q − 2r)!
.

Note that, in general,
‖f̃‖L2(µp) ≤ ‖f‖L2(µp),

i.e. symmetrization shrinks.

We are now ready to state a fundamental result.

Theorem 3 (Multiplication formulae). Take f ∈ L2
sym(µp) and g ∈ L2

sym(µq). Then

Ip(f)× Iq(g) =

min(p,q)∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r

(
f̃ ⊗r g

)
.

We will proceed to a heuristic proof of this result. For a detailed proof consult [15].

Proof. First note how we have, at each step, been very careful to avoid the diagonals. Hence by our
construction Ip(f) can be seen as

Ip(f) =

∫
A
. . .

∫
A
f(x1, . . . , xp)1{xi 6=xj ,i 6=j}G(dx1) . . . G(dxp).

Then we have (as through Fubini)

Ip(f)Iq(g)

=

∫
Ap+q

f(x1, . . . , xp)︸ ︷︷ ︸
no diag

g(y1, . . . , yq)︸ ︷︷ ︸
no diag

G(dx1) . . . G(dxp)G(dy1) . . . G(dyp).

While there are no diagonals in the first and second blocks, there are all possible mixed diagonals in
the joint writing. Hence we need to take into account all these diagonals (whence the combinatorial
coefficients in the statement, which count all possible diagonal sets of size r) and then “integrate out”,
in other words we get

Ip(f)Iq(g)

=

min(p,q)∑
r=0

r!

(
p

r

)(
q

r

)∫
Ap−r

∫
Aq−r

ζG(dx1) . . . G(dxp−r)G(dy1) . . . G(dyq−r),

with

ζ =

(∫
Ar
f(ar, x1, . . . , xp−r)g(ar, xp−r+1, . . . , xp+q−2r)µ

r(dar)

)
.

Since DiagG(da) = µ(da), we get the proof.
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2.7 Hermite polynomials and chaos

Definition 5. We define the Hermite polynomials as the family of polynomials {Hn;n ≥ 0} such that
H0 ≡ 1 and, for all n ≥ 1,

Hn(x) = (−1)nex
2/2dnx(e−x

2/2).

The following exercise gather the important properties of the Hermite polynomials.

Exercise 5. Define the divergence operator δ on the space Dom(δ) ⊂ L2(IR, γ) as δϕ(x) :=

−ϕ′(x)+xϕ = −e
x2

2
d
dx(e−

x2

2 ϕ(x)). Let p ≥ 0 be an integer. We define the pth Hermite Polynomial
as H0 = 1 and Hp = δp1, where here δp = δ ◦ · · · ◦ δ, p times.
(a) Show that dδ − δd = Identity, where d = d

dx , and moreover δHp = Hp+1, dHp = pHp−1 and
(δ + d)Hp = xHp.
(b) for any p, q ≥ 0 show that ∫

R
Hp(x)Hq(x)γ(dx) = δp,qp!,

where here δp,q stands for the Kronecker delta.
(c) Show that the family { 1√

p!
Hp : p ≥ 0} is an orthonormal basis of L2(IR, γ).

(d) Define the Ornstein-Uhlenbeck generator Lϕ(x) = −xϕ′(x) +ϕ′′(x). Show that LHp = −pHp.

In other words the multiple integrals are infinite dimensional versions of the Hermite polynomials.

Proposition 4. For all h ∈ L2(µ) such that ‖h‖L2(µ) = 1 we define

h⊗p(x1, . . . , xp) =

p∏
i=1

h(xi) ∈ L2
sym(µp).

Then, for all p ≥ 1, we have
Ip(h

⊗p) = Hp(I1(h)).

This is sometimes called the Wick product of order p of I1(h).

Proof. Trivial for p = 1. Proceed by induction and choose p ≥ 1. Then note that

Ip(h
⊗p)I1(h) = Ip+1(h⊗p+1) + pIp−1(h⊗p)

Whence, using the recursion,

Ip+1(h⊗p+1) = Hp(I1(h))I1(h)− pHp−1(I1(h))

Using the previous exercise we also know that

dxHp(x) = pHp−1(x)

and thus

Ip+1(h⊗p+1) = Hp(I1(h))I1(h)−Hp(I1(h))

= δHp(I1(h))

= Hp+1(I1(h)).

Theorem 4. [Chaotic representation] For all F ∈ L2(σ(G)) there exists a unique {fq; q ≥ 1} such
that fq ∈ L2

sym(µq) and we have

F = IE(F ) +
∞∑
q=1

Iq(fq) (10)

(the equality is in L2(IP)). In particular

IE(F 2) = IE(F )2 +
∞∑
q=1

q!‖fq‖2L2(µq).
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Proof. We start with a few facts.

- Fact 1 : random variables of the type I1(h) with ‖h‖L2(µ) = 1 generate σ(G).

- Fact 2 : for all λ the function eiλI1(h) can be approximated in L2(IP) by complex linear combinations
(through Taylor) of powers I1(h)m, m ≥ 1.

- Fact 3 : If X ∈ L2(σ(G)) is such that IE(XI1(h)m) = 0 for all h,m, then IE(XeiλI1(h)) = 0 for all
λ, h implies that X = 0 almost surely.

As a consequence

v.s.L
2(σ(G)){I1(h)m ; ‖h‖L2(µ) = 1 and m ≥ 1} = L2(σ(G)).

Hence, all we need to do is to show the theorem for random variables of the type I1(h)m, i.e. we need
to show that every F = I1(h)m admits a representation (10). But we already now that there exist
Cq,m, some real constants, such that

I1(h)m =

m∑
q=0

Cq,mHq(I1(h)),

=
m∑
q=0

Cq,mIq(h
⊗q).

3 Elements of Malliavin Calculus

We work within the framework of a Gaussian measure G with the control measure µ having the suitable
properties. We associate to all F ∈ L2(σ(G)) an expansion F = IE(F ) +

∑
q≥1 Iq(fq).

3.1 The derivative operator D

We take

dom(D) :=

F ∈ L2(σ(G)) :
∞∑
q=1

qq!‖fq‖2L2(µq) <∞


For F ∈ dom(D) we define

DtF =
∞∑
q=1

qIq−1(fq(t, •)), t ∈ A

where • indicates that we integrate over the (q − 1) remaining variables. We can then see that

IE

[∫
A

(DtF )2µ(dt)

]
=

∫
A
µ(dt)E

 ∞∑
q=1

qIq−1(fq(t, •))

2
=

∫
A
µ(dt)

∞∑
q=1

q2(q − 1)‖fq(t, •)‖2

=
∞∑
q=1

qq!‖fq‖2L2(µq) <∞.

First note that for fq = h⊗q with ‖h‖ = 1, then Iq(fq) = Hq(I1(h)) and

DtIq(fq) = qIq−1(fq(t, •)) = qIq−1(h⊗q−1)h(t) = qHq−1(I1(h))h(t)

= H ′q(I1(h))h(t). (11)

In particular DtI1(h) = h(t). Using this fact together with several approximation arguments one
can prove the following chain rules.
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Proposition 5. [Chain rule 1]Let h1, . . . , hd ∈ L2(µ) and take f : IRd → IR ∈ C1
b . Now define

F = f(I1(h1), . . . , I1(hd)). Then F ∈ dom(D), and

DtF =

d∑
j=1

∂xjf(I1(h1), . . . , I1(hd))hj(t).

The requirement that the functions be C1
b (differentiable with bounded derivatives) is too stringent,

and can be replaced by polynomial tail behavior.

Proposition 6. [Chain rule 2] Take F ∈ dom(D) and f : IR→ IR ∈ C1
b . Then

Dtf(F ) = f ′(F )DtF.

Note that nowhere do we suppose that F have a density; we could end up sometimes with random
variables defined a.e. and for which f ′(F ) is only defined almost everywhere. Assuming that F has a
density one can go a step further.

Proposition 7. [Chain rule 3] Take F ∈ dom(D) and f : IR→ IR Lipschitz (in particular absolutely
continuous and a.e. differentiable). Suppose moreover that F has a density (wrt Lebesgue measure).
Then

Dtf(F ) = f ′(F )DtF.

Working upwards we can also show the last chain rule, which will in particular allow us to work
with polynomials (and hence compute moments).

Proposition 8. [Chain rule 4] If F =
∑M

j=0 Ij(fj) be a finite sum of multiple integrals (in particular
having density), then

Dtp(F ) = p′(F )DtF

for every polynomial p : IR→ IR.

3.2 Generator of the Ornstein-Uhlenbeck semigroup L

We take

dom(L) :=

F ∈ L2(σ(G)) :
∞∑
q=1

q2q!‖fq‖2L2(µq) <∞

 .

For all F ∈ dom(L) we define

LF = −
∞∑
q=1

qIq(fq).

For every F ∈ L2(σ(G)) we also define

L−1F = −
∞∑
q=1

1

q
Iq(fq).

This is a pseudo-inverse of the operator L, because

LL−1F = F − IE(F ).

Note that L−1(F ) ∈ dom(D) and dom(L) always, because this is just the chaotic expansion of a
r.v. whose kernels are Iq/q which can be safely multiplied by q and q2.

Proposition 9. [Malliavin integration by parts] Assume that F,G ∈ L2(σ(G)) with IE(F ) = 0
and G ∈ dom(D). Then

IE(FG) = IE(〈DG,−DL−1F 〉L2(µ)).
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Proof. Again by density arguments we just prove it for F = Iq(f) and G = Ip(g). But then

IE(FG) = δp,qq!〈f, g〉L2(µq)

and
FtG = pIp−1(g(t, •)).

Also we have

L−1F = −1

q
Iq(f) and −DtL

−1F = Iq−1(f(t, •))

so that, taking expectations, we get

IE(〈DG,−DL−1F 〉L2(µ)) =

∫
A
µ(dt)IE[pIp−1(g(t, •))Iq−1(f(t, •))]

= δp,qp

∫
A
µ(dt)(p− 1)!

∫
Ap−1

g(t, x̄p−1)f(t, x̄p−1)dµp−1

= δp,qp!〈f, g〉L2(µp).

Corollary 2. Assume that IE(F ) = 0 for F ∈ dom(D). Also assume that f is such that the chain rule
applies. Then

IE(Ff(F )) = IE(〈DF,−DL−1F 〉L2(µ))

= IE(f ′(F )〈DF,−DL−1F 〉L2(µ))

Corollary 3. Take F = Iq(f) and n ≥ 1. Then

IE(Fn+1) = IE(FFn) = nIE(Fn−1〈DF,−DL−1F 〉L2(µ))

=
n

q
IE(Fn−1‖DF‖2L2(µ)),

where L−1F = −1
qF . In particular, we have

IE(F 4) =
3

q
IE
(
F 2‖DF‖2L2(µ)

)
.

Part III

Stein meets Malliavin

Via the Stein’s approach, we have already seen that for any integrable random variable F ∈ L1(IP) we
have

dTV (F,N (0, 1)) ≤ sup
f∈FTV

∣∣E(Ff(F )− f ′(F ))
∣∣

with FTV = {‖f‖ ≤
√
π/2, ‖f ′‖ ≤ 2}. As was noted before, the supremum is annoying. The following

theorem shows that, in the Gaussian framework, things are extremely favorable. From hereon, we
assume that G is a Gaussian random measure over (A,A, µ), and all random variables are measurable
functionals of G.

Theorem 5. Let F ∈ dom(D) with IE(F ) = 0. Assume that F has a density (to use Proposition 7).
Then

dTV (F,N (0, 1)) ≤ 2IE
∣∣1− 〈DF,−DL−1F 〉L2(µ)

∣∣ .
We have thus reduces the problem of controlling the TV distance to the computation of an

expectation!
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Proof. For every f ∈ FTV, and using Proposition 7 we have∣∣IE(Ff(F )− f ′(F ))
∣∣ =

∣∣IE(f ′(F )(〈DF,−DL−1F 〉L2(µ) − 1))
∣∣

≤ 2IE
∣∣(〈DF,−DL−1F 〉L2(µ) − 1)

∣∣ .
Note that to obtain the last inequality in above, we use the fact that ‖f ′‖∞ ≤ 2 for every f ∈ FTV.

Corollary 4. If F = I1(h), i.e. F ∼ N (0, ‖h‖2) then

〈DF,−DL−1F 〉L2(µ) = ‖h‖2.

Hence
dTV (I1(h),N (0, 1)) ≤ 2

∣∣1− ‖h‖2∣∣ .
Corollary 5. If F = Ip(h) for some f ∈ L2

sym(µp), then 〈DF,−DL−1F 〉L2(µ) = 1
p‖DF‖

2, and hence

dTV (F,N (0, 1)) ≤ 2IE

∣∣∣∣1− 1

p
‖DF‖2

∣∣∣∣
≤ 2

√
IE

(
1− 1

p
‖DF‖2

)2

.

Therefore, for a sequence {Fn = Ip(hn)}n≥1 of multiple integrals of a fixed order p ≥ 2 such that
IE(Fn)2 → 1, we have

‖DFn‖2L2(µ)

L2(IP)−→ p =⇒ Fn
law→ N (0, 1).

Corollary 6. If F = Ip(h) for some f ∈ L2
sym(µp), and IE(F 2) = σ2. Then

dTV(F,N (0, σ2)) ≤ 2

σ2

√
IE

(
σ2 − 1

p
‖DF‖2

)2

. (12)

Hence,

dTV(F,N (0, 1)) ≤ 2|1− σ2|+ 2

σ2

√
Var

(
1

p
‖DF‖2

)
. (13)

Moreover, for a sequence {Fn = Ip(hn)}n≥1 of multiple integrals of a fixed order p ≥ 2 such that
IE(F 2

n)→ σ2 > 0, we have

‖DFn‖2L2(µ)

L2(IP)−→ p× σ2 =⇒ Fn
law→ N (0, σ2).

Proof. For the claim (12), use the facts that if N ∼ N (0, σ2), then N
σ ∼ N (0, 1) together with

dTV(F,N (0, σ2)) = dTV(
F

σ
,
N

σ
).

Now, just left to apply Corollary 5. For the claim (13), use the triangular inequality, Corollary 4 and
the relation (12). Note that when IE(F 2) = σ2, then IE(1

p‖DF‖) = IE(F 2), by using the Malliavin
integration by part formula.

Now, we are ready to state that approximating random variables in a fixed Wiener chaos by
Gaussian is a nontrivial enterprise.

Theorem 6 (Nourdin, Peccati (2009) 3). Let p ≥ 2 and f ∈ L2
sym(µp) 6= 0. Take F = Ip(f). Then

dTV (F,N (0, 1)) ≤ 2
∣∣1− IE(F 2)

∣∣+ 2

√
Var

(
1

p
‖DF‖2

)
≤ 2

∣∣1− IE(F 2)
∣∣+ 2

√
p− 1

3p

√
IE(F 4)− 3IE(F 2)2. (14)

Note that
√

p−1
3p ≤

2√
3

and is thus independent of p.

3 Nourdin, I., Peccati, G. (2009) Stein’s method on Wiener chaos. Probab. Theory Related Fields, 45, no. 1-2, 75-118
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In particular in order to have a CLT in a fixed Wiener chaos it suffices to control the fourth
moments (whereas before this discovery, one had to show convergence of all moments!).

Corollary 7 (Nualart, Peccati (2005)). Assume that Fn = Ip(fn) for p ≥ 2 such that IE(F 2
n) → 1.

Then
Fn → N (0, 1)

in TV distance (and in particular, in distribution) if and only if

IE(F 4
n)→ 3 = IE(N (0, 1)4).

Remark 10. The “If” part of Corollary 7 is a consequence of (14). On the other hand if IE(F 2
n)→

1 and Fn → N (0, 1) in distribution, then for all r ≥ 2 the sequence {IE(|Fn|r)} is bounded by
hypercontractivity and thus, for all r ≥ 3, we have

IE(F rn)→ IE(N (0, 1)r).

Proof of Theorem 6. We aim to prove that

Var(
1

p
‖DF‖2) ≤ p− 1

3p

{
IE(F 4)− 3IE(F 2)2

}
.

We are going to use the formula

IE(F 4) =
3

p
IE(F 2‖DF‖2L2(µ)).

The whole proof relies on the derivation of the chaotic decompositions of the rv’s of interest. Now, for
F = Ip(f) recall that DtF = pIp−1(f(t, ·)) to write (using product formula)

1

p
‖DF‖2 = p

∫
A
µ(dt)(Ip−1(f(t, ·)))2

= p

∫
A
µ(dt)

p−1∑
r=0

r!

(
p− 1

r

)2

I2(p−1)−2r( ˜f(t, ·)⊗r f(t, ·))

= p

p−1∑
r=0

r!

(
p− 1

r

)2

I2p−2(r+1)( ˜f ⊗r+1 f)

where to obtain this we have used a stochastic integral version of Fubini’s theorem. Pursuing with a
change of summation variables we deduce

1

p
‖DF‖2 = p

p∑
r=1

(r − 1)!

(
p− 1

r − 1

)2

I2p−2r(f̃ ⊗r f)

= p!‖f‖2 + p

p−1∑
r=1

(r − 1)!

(
p− 1

r − 1

)2

I2p−2r(f̃ ⊗r f).

Note that p!‖f‖2 = IE(F 2), and we get

1

p
‖DF‖2 = IE(F 2) + p

p−1∑
r=1

(r − 1)!

(
p− 1

r − 1

)2

I2p−2r(f̃ ⊗r f).

Since we have already shown that 1
p IE(‖DF‖2) = IE(F 2) we deduce, by orthogonality of Wiener chaoses,

our first estimate

Var

(
1

p
‖DF‖2

)
=

p−1∑
r=1

p2(r − 1)!2
(
p− 1

r − 1

)4

(2p− 2r)!‖f̃ ⊗r f‖2

=
1

p2

p−1∑
r=1

r2r!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2.

(15)
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Now we also have

F 2 =

p∑
r=0

r!

(
p

r

)2

I2p−2r(f̃ ⊗r f) = p!‖f‖2 +

p−1∑
r=0

r!

(
p

r

)2

I2p−2r(f̃ ⊗r f). (16)

We can now compute the fourth moment

IE(F 4) = 3IE(F 2 × 1

p
‖DF‖2)

= 3IE(F 2)2 + 3

p−1∑
r=1

pr!(r − 1)!

(
p

r

)2(p− 1

r − 1

)2

(2p− 2r)!‖f̃ ⊗r f‖2. (17)

Therefore,

IE(F 4)− 3IE(F 2)2 = 3p

p−1∑
r=1

r!(r − 1)!

(
p

r

)2(p− 1

r − 1

)2

(2p− 2r)!‖f̃ ⊗r f‖2

=
3

p

p−1∑
r=1

rr!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2.

(18)

Comparing the sums in (15) and (18) we recover the desired inequality

Var

(
1

p
‖DF‖2

)
≤ p− 1

3p

{
IE(F 4)− 3IE(F 2)2

}
. (19)

Note that the following estimate is also in order:

p− 1

3p

{
IE(F 4)− 3IE(F 2)2

}
≤ (p− 1)Var

(
1

p
‖DF‖2

)
.

Remark 11. If one instead using the clever Malliavin relation

IE(F 4) =
3

p
IE(F 2‖DF‖2L2(µ))

by expanding F 4 on Wiener chaoses to compute IE(F 4) what we will end up with (take into account
16)

IE(F 4) = IE(F 2 × F 2) =

p∑
r=0

r!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2

= p!2‖f‖4 + (2p)!‖f̃ ⊗0 f‖2 +

p−1∑
r=1

r!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2

= IE(F 2)2 + (2p)!‖f̃ ⊗0 f‖2 +

p−1∑
r=1

r!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2.

Hence, we have the presence of the norm of the zero-contraction ‖f̃ ⊗0 f‖2, which in fact never appears

in the expansion Var
(

1
p‖DF‖

2
)

. Therefore, using this approach, one needs to represent the norm of

the zero-contraction ‖f̃ ⊗0 f‖2 in terms of the norm of other non-zero contraction to be able to do
comparison. Hopefully, this can be done and is the message of the next exercise. Here, we highlight that
the appearance of norms (inner products) of zero-contractions involving the kernel f is in fact the main
obstacle in front towards generalization of the Malliavin-Stein approach for non-Gaussian approximation
using product formula as the main tools. A typical example is when the target distribution is of the
form N1 ×N2 and N1, N2 ∼ N (0, 1) are independent.
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Exercise 6. (a) Show that

(2p)!‖f̃ ⊗0 f‖2 = 2(p!)2‖f‖4 + p!2
p−1∑
r=1

(
p

r

)2

‖f ⊗r f‖2.

(b) Use part (a) to show that

IE(F 4)− 3IE(F 2)2 = p!2
p−1∑
r=1

(
p

r

){
‖f ⊗r f‖2 +

(
2p− 2r

p− r

)
‖f̃ ⊗r f‖2

}
.

Remark 12. The computations in the proof show that there exists a constant c := c(p) > 0 only
depending on p for which

dTV(Ip(f),N (0, 1)) ≤ c(p) max
r=1,...,p−1

{
‖f̃ ⊗r f‖L2(µ2p−2r)

}
≤ c(p) max

r=1,...,p−1

{
‖f ⊗r f‖L2(µ2p−2r)

}
(20)

The estimate in (20) is that which is most used in practical situations since it is easier to estimate
contractions rather than moments.

3.3 The multidimensional case

Let d ≥ 2, and fix d natural numbers 1 ≤ p1 ≤ p2 ≤ · · · ≤ pd. Consider a sequence of d-dimensional
random vectors of the form

Fn = (F 1
n , · · · , F dn) = (Ip1(f1

n), · · · , Ipd(f
d
n)). (21)

Our aim in this section is to prove the following multidimensional version of the fourth moment theorem
due to Peccati–Tudor (2005).

Theorem 7. Let Fn be a sequence of d-dimensional random vectors of the form (22) such that

lim
n→∞

IE(F in × F jn) = δij , 1 ≤ i, j ≤ d.

Then the following statements are equivalent.

(a) F in
law→ N (0, 1), for all 1 ≤ i ≤ d.

(b) IE(F in)4 → 3, for all 1 ≤ i ≤ d.

(c) ‖DF in‖2
L2(IP)→ pi, for all 1 ≤ i ≤ d.

(d) ‖f in ⊗r f in‖L2(µ2pi−2r) → 0, for all 1 ≤ i ≤ d, and r = 1, · · · , pi − 1.

(e) Fn
law→ Nd(0, Id).

In other words, Theorem 7 tells us that the component-wise convergence to Gaussian distributions
implies the joint convergence of the vector to the multidimensional Gaussian. There are different ways
to prove Theorem 7. Here, we follow the path was developed by Nualart & Ortiz-Latorre. Their strategy
mainly consists of showing that the characteristic function of any adherence value in distribution
satisfies in the same ordinary differential equation as the characteristic function of the d-dimensional
Gaussian random variable. The advantage of their approach compare to multidimensional Stein’s
method (which is more involved compare to one dimensional version) is its simplicity and as drawback
this approach is not quantitative, and hence one can not provide any rate of convergence. The interested
reader can consult [13, Chapter 6] for a proof of Theorem 7 using multidimensional Stein’s method.
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The token of the main part of Theorem 7 can be decoded using the following lemma in which the
Malliavin derivative matrix

Γn = (Γi,jn )1≤i,j≤d =
(
〈DF in, DF jn〉L2(µ)

)
1≤i,j≤d

plays an essential role. The Malliavin derivative matrix Γ is in the core of the studies of regularities of
laws of random vectors (see [15, Chapter 2]). In the next lemma, we will use again heavily the specific
structure of the underlying random variables.

Lemma 4. Let
Fn = (F 1

n , · · · , F dn) = (Ip1(f1
n), · · · , Ipd(f

d
n)) (22)

such that for every 1 ≤ i, j ≤ d, IE(F in × F
j
n)→ δi,j. Then

‖DF in‖2
L2(IP)→ pi =⇒ Γi,jn = 〈DF in, DF jn〉L2(µ)

L2(IP)→ √
pipjδi,j .

Proof. We need to show that for any i < j (and so pi ≤ pj) we have

lim
n→∞

IE
(
〈DF in, DF jn〉2L2(µ)

)
= 0.

Using exercise 2, part (a), we know that

IE
(
〈DF in, DF jn〉2

)
L2(µ)

=

pi∑
r=1

(pi!pj !)
2

((pi − r)!(pj − r)!(r − 1)!)2
‖f in⊗̃rf jn‖2

≤
pi∑
r=1

(pi!pj !)
2

((pi − r)!(pj − r)!(r − 1)!)2
‖f in ⊗r f jn‖2

So, we are left to show that ‖f in ⊗r f
j
n‖2 → 0 for all 1 ≤ r ≤ pi. Using the very definition of the

contraction, Fubini’s theorem, and Cauchy–Schwarz inequality, we can write

‖f in ⊗r f jn‖2 = 〈f in ⊗r f jn, f in ⊗r f jn, 〉L2(µpi+pj−2r)

= 〈f in ⊗pi−r f in, f jn ⊗pj−r f jr 〉L2(µ2r)

≤ ‖f in ⊗pi−r f in‖ × ‖f jn ⊗pj−r f jn‖.

(23)

Case (a): if r = pi = pj , then ‖f in ⊗r f
j
n‖2 =

(
IE(F in × F

j
n)
)2
→ 0 by assumption. Case (b):

if 1 ≤ r ≤ pi − 1, then assumption ‖DF in‖2
L2(IP)→ pi implies that F in

law→ N (0, 1) and therefore
‖f in ⊗r f in‖2 → 0 for all 1 ≤ r ≤ pi − 1. Hence, the right hand side inequality (23) tends to zero. Case
(c): if r = pi < pj . In this case, the right hand side of (23) takes the form

‖f in ⊗pi−r f in‖ × ‖f jn ⊗pj−r f jn‖ = ‖f in‖2 × ‖f jn ⊗pj−r f jn‖
= IE(F in)2 × ‖f jn ⊗pj−r f jn‖ → 0,

Because IE(F in)2 → 1 and so bounded and ‖f jn ⊗pj−r f
j
n‖ → 0.

Proof. Proof of Theorem 7. It is enough to prove the implication (c)⇒ (e). Since IE(F in × F
j
n)→ δi,j ,

for i = j, this implies that supn≥1 IE(F in)2 < +∞. Therefore, the sequence {Fn}n≥1 is tight, and so it
is enough to show that the limit of any convergence in distribution subsequence {Fnk}n≥1 is in fact

Nd(0, Id). To this end, assume that Fnk
law→ F∞, as k →∞ for some random vector F∞ = (F 1

∞, · · · , F d∞).

By our assumptions, first we have that F i∞ ∈ L2(Ω) for all 1 ≤ i ≤ d, and moreover IE(F i∞ × F
j
∞) = 0

if i 6= j. Now, let’s denote the characteristic function ϕn(t) = IE(ei〈t,Fn〉IRd ) for t ∈ IRd. Then
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ϕnk(t) → ϕ(t) for any t, where ϕ∞ is the characteristic function of F∞. Note that the fact that

F j∞ ∈ L2(Ω) implies that the partial derivatives ∂
∂tj
ϕ∞ = iIE(F j∞e

i〈t,F∞〉IRd ) are well defined. Now,

continuous mapping theorem tells us that

Fnke
i〈t,Fnk 〉IRd law→ F j∞e

i〈t,F∞〉IRd . (24)

Note that the sequence in the left hand side of (24) is bounded in L2(Ω) and so uniformly integrable.
Hence, for all 1 ≤ j ≤ d, and t ∈ IRd, as k →∞:

∂

∂tj
ϕnk(t) = iIE(F jnke

i〈t,Fnk 〉IRd )→ ∂

∂tj
ϕ∞ = iIE(F j∞e

i〈t,F∞〉IRd ). (25)

On the other hand side, using integration by part formula: (note that IE(F jnk) = 0)

IE
(
F jnke

i〈t,Fnk 〉IRd
)

= IE
(
〈Dei〈t,Fnk 〉IRd ,−DL−1F jnk〉

)
= − i

pj

d∑
l=1

tl IE
(
ei〈t,Fnk 〉IRd IE(〈DF lnk , DF

j
nk
〉)
)

= − i

pj

d∑
l=1

tl IE
(
ei〈t,Fnk 〉IRdΓl,jnk

)
.

Therefore

∂

∂tj
ϕnk(t) = − 1

pj

d∑
l=1

tl IE
(
ei〈t,Fnk 〉IRdΓl,jnk

)
.

Hence, Lemma 4 implies that the characteristic function ϕ∞ satisfies in equation

∂

∂tj
ϕ∞(t) = −tjϕ∞(t),

for all j = 1, · · · , d and t ∈ IRd. Therefore, the only possibility for ϕ∞ is to be the characteristic
function of Nd(0, Id).

We finish this section with the following very general result.

Theorem 8. Let {Fn}n≥1 be a square-integrable sequence with the following chaos decompositions: for
every n ≥ 1

Fn =
∞∑
p=1

Ip(fn,p). (26)

In addition, assume the following:

(a) for all p ≥ 1, we have p!‖fn,p‖2 → σ2
p.

(b)
∑

p≥1 σ
2
p < +∞.

(c) for all p ≥ 2 and every r = 1, · · · , p− 1, we have ‖fn,p ⊗r fn,p‖ → 0, as n→∞.

(d)

lim
N→∞

sup
n≥1

∞∑
p=N+1

p! ‖fn,p‖2 = 0.

Then we have Fn
law→ N (0, σ2).
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Proof. For all N ≥ 1, set

Fn,N =
N∑
p=1

Ip(fn,p)

GN ∼N (0, σ2
1 + · · ·+ σ2

N )

G ∼N (0, σ2).

Therefore, for any t ∈ IR:

∣∣∣IE(eitFn)− IE(eitG)
∣∣∣ ≤ ∣∣∣IE(eitFn)− IE(eitFn,N )

∣∣∣
+
∣∣∣IE(eitFn,N )− IE(eitGN )

∣∣∣
+
∣∣∣IE(eitGN )− IE(eitG)

∣∣∣ := an,N + bn,N + cN .

Note that

cN =
∣∣∣e− t22 (σ2

1+···+σ2
N ) − e−

t2

2
σ2
∣∣∣ ≤ t2

2

∣∣∣σ2 −
N∑
i=1

σ2
i

∣∣∣→ 0,

as N →∞, because of assumption (b). Moreover,

sup
n≥1

an,N = sup
n≥1

∣∣∣IE(eitFn)− IE(eitFn,N )
∣∣∣

≤ |t| sup
n≥1

IE|Fn − Fn,N | ≤ |t|
√

sup
n≥1

IE(Fn − Fn,N )2

≤ |t|
√

sup
n≥1

∑
p≥N+1

σ2
p → 0,

by assumption (d). Hence, for ε > 0, choose N large enough so that supn≥1 an,N ≤ ε/3 and cN ≤ ε/3.
Also, according to Peccati–Tudor multidimensional version of the fourth moment theorem, we have in
fact that, as n→∞,

(I1(fn,1), · · · , IN (fn,N ))
law→ NN

(
0,diag(σ2

1, · · · , σ2
N )
)
.

Therefore, Fn,N =
∑N

p=1 Ip(fn,p)
law→ N (0, σ2

1 + · · ·+ σ2
N ). Hence, bn,N ≤ ε/3 if n is large enough.

4 Applications and related topics

The following two subsections are borrowed mostly from 4

4.1 Breuer–Major Theorem

Let {Xk}k≥1 be a centered stationary Gaussian family. In this context, stationary just means that
there exists ρ : Z→ IR such that IE[XkXl] = ρ(k − l), k, l ≥ 1. Assume further that ρ(0) = 1, that is,
each Xk is N (0, 1) distributed.

Let ϕ : IR→ IR be a measurable function satisfying

E[ϕ2(X1)] =
1√
2π

∫
IR
ϕ2(x)e−x

2/2dx <∞. (27)

4Nourdin, Ivan: Lectures on Gaussian approximations with Malliavin calculus. Séminaire de Probabilités XLV, 389,
Lecture Notes in Math., 2078, Springer, 2013.
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It is a well-known fact that, when it verifies (27), the function ϕ may be expanded in L2(IR, e−x
2/2dx)

(in a unique way) in terms of Hermite polynomials as follows:

ϕ(x) =

∞∑
q=0

aqHq(x). (28)

Let d ≥ 0 be the first integer q ≥ 0 such that aq 6= 0 in (28). It is called the Hermite rank of ϕ; it will
play a key role in our study. Also, let us mention the following crucial property of Hermite polynomials
with respect to Gaussian elements. For any integer p, q ≥ 0 and any jointly Gaussian random variables
U, V ∼ N (0, 1), we have

E[Hp(U)Hq(V )] =

{
0 if p 6= q

q!E[UV ]q if p = q.
(29)

In particular (choosing p = 0) we have that E[Hq(X1)] = 0 for all q ≥ 1, meaning that a0 = E[ϕ(X1)]
in (28). Also, combining the decomposition (28) with (29), it is straightforward to check that

E[ϕ2(X1)] =
∞∑
q=0

q!a2
q . (30)

We are now in position to state the celebrated Breuer-Major theorem.

Theorem 9 (Breuer, Major, 1983; see [6]). Let {Xk}k≥1 and ϕ : IR→ IR be as above. Assume further
that a0 = IE[ϕ(X1)] = 0 and that

∑
k∈Z |ρ(k)|d < ∞, where ρ is the covariance function of {Xk}k≥1

and d is the Hermite rank of ϕ (observe that d ≥ 1). Then, as n→∞,

Vn =
1√
n

n∑
k=1

ϕ(Xk)
law→ N (0, σ2), (31)

with σ2 given by

σ2 =
∞∑
q=d

q!a2
q

∑
k∈Z

ρ(k)q ∈ [0,∞). (32)

(The fact that σ2 ∈ [0,∞) is part of the conclusion.)

The proof of Theorem 9 is far from being obvious. The original proof follows the method of the
moments/cumulant, i.e. to show that all the moments of Vn converge to those of the Gaussian law
N (0, σ2). As anyone might guess, this required a high ability and a lot of combinatorics. In the proof
we will offer, we use the strong approach of the fourth moment theorem. Hence, the complexity is the
same as checking that the variance and the fourth moment of Vn converges to σ2 and 3σ4 respectively,
which is a drastic simplification with respect to the original proof. Before doing so, let us make some
other comments.

Remark 13. 1. First, it is worthwhile noticing that Theorem 9 (strictly) contains the classical
central limit theorem (CLT), which is not an evident claim at first glance. Indeed, let {Yk}k≥1 be
a sequence of i.i.d. centered random variables with common variance σ2 > 0, and let FY denote
the common cumulative distribution function. Consider the pseudo-inverse F−1

Y of FY , defined as

F−1
Y (u) = inf{y ∈ IR : u ≤ FY (y)}, u ∈ (0, 1).

When U ∼ U[0,1] is uniformly distributed, it is well-known that F−1
Y (U)

law
= Y1. Observe also that

1√
2π

∫ X1

−∞ e
−t2/2dt is U[0,1] distributed. By combining these two facts, we get that ϕ(X1)

law
= Y1

with

ϕ(x) = F−1
Y

(
1√
2π

∫ x

−∞
e−t

2/2dt

)
, x ∈ IR.
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Assume now that ρ(0) = 1 and ρ(k) = 0 for k 6= 0, that is, assume that the sequence {Xk}k≥1 is
composed of i.i.d. N (0, 1) random variables. Theorem 9 yields that

1√
n

n∑
k=1

Yk
law
=

1√
n

n∑
k=1

ϕ(Xk)
law→ N

0,

∞∑
q=d

q!a2
q

 ,

thereby concluding the proof of the CLT since σ2 = IE[ϕ2(X1)] =
∑∞

q=d q!a
2
q , see (30). Of course,

such a proof of the CLT is like to crack a walnut with a sledgehammer. This approach has
nevertheless its merits: it shows that the independence assumption in the CLT is not crucial to
allow a Gaussian limit. Indeed, this is rather the summability of a series which is responsible of
this fact, see also the second point of this remark.

2. Assume that d ≥ 2 and that ρ(k) ∼ |k|−D as |k| → ∞ for some D ∈ (0, 1
d). In this case, it

may be shown that ndD/2−1
∑n

k=1 ϕ(Xk) converges in law to a non-Gaussian (non degenerated)
random variable. This shows in particular that, in the case where

∑
k∈Z |ρ(k)|d = ∞, we can

get a non-Gaussian limit. In other words, the summability assumption in Theorem 9 is, roughly
speaking, equivalent (when d ≥ 2) to the asymptotic normality. However, this line of results
are really out of the scope of the course (for more information in this regard consult [13] and
references therein).

Let us now prove Theorem 9. We first compute the limiting variance, which will justify the formula
(32) we claim for σ2. Thanks to (28) and (29), we can write

IE[V 2
n ] =

1

n
IE

 ∞∑
q=d

aq

n∑
k=1

Hq(Xk)

2 =
1

n

∞∑
p,q=d

apaq

n∑
k,l=1

IE[Hp(Xk)Hq(Xl)]

=
1

n

∞∑
q=d

q!a2
q

n∑
k,l=1

ρ(k − l)q =
∞∑
q=d

q!a2
q

∑
r∈Z

ρ(r)q
(
1− |r|

n

)
1{|r|<n}.

When q ≥ d and r ∈ Z are fixed, we have that

q!a2
qρ(r)q

(
1− |r|

n

)
1{|r|<n} → q!a2

qρ(r)q as n→∞.

On the other hand, using that |ρ(k)| = |IE[X1Xk+1]| ≤
√

IE[X2
1 ]IE[X2

1+k] = 1, we have

q!a2
q |ρ(r)|q

(
1− |r|

n

)
1{|r|<n} ≤ q!a2

q |ρ(r)|q ≤ q!a2
q |ρ(r)|d,

with
∑∞

q=d

∑
r∈Z q!a

2
q |ρ(r)|d = E[ϕ2(X1)]×

∑
r∈Z |ρ(r)|d < ∞, see (30). By applying the dominated

convergence theorem, we deduce that IE[V 2
n ]→ σ2 as n→∞, with σ2 ∈ [0,∞) given by (32).

Let us next concentrate on the proof of (31). We shall do it in three steps of increasing generality
(but of decreasing complexity!):

(i) when ϕ = Hq has the form of a Hermite polynomial (for some q ≥ 1);

(ii) when ϕ = P ∈ IR[X] is a real polynomial;

(iii) in the general case when ϕ ∈ L2(IR, e−x
2/2dx).

We first show that (ii) implies (iii). That is, let us assume that Theorem 9 is shown for polynomial
functions ϕ, and let us show that it holds true for any function ϕ ∈ L2(IR, e−x

2/2dx). We proceed by
approximation. Let N ≥ 1 be a (large) integer (to be chosen later) and write

Vn =
1√
n

N∑
q=d

aq

n∑
k=1

Hq(Xk) +
1√
n

∞∑
q=N+1

aq

n∑
k=1

Hq(Xk) =: Vn,N +Rn,N .
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Similar computations as above lead to

sup
n≥1

IE[R2
n,N ] ≤

∞∑
q=N+1

q!a2
q ×

∑
r∈Z
|ρ(r)|d → 0 as N →∞. (33)

(Recall from (30) that IE[ϕ2(X1)] =
∑∞

q=d q!a
2
q <∞.) On the other hand, using (ii) we have that, for

fixed N and as n→∞,

Vn,N
law→ N

0,
N∑
q=d

q!a2
q

∑
k∈Z

ρ(k)q

 . (34)

It is then a routine exercise (details are left to the reader) to deduce from (33)-(34) that Vn =

Vn,N +Rn,N
law→ N (0, σ2) as n→∞, that is, that (iii) holds true.

Next, let us prove (i), that is, (31) when ϕ = Hq is the qth Hermite polynomial. The space

H := span{X1, X2, . . .}
L2(Ω)

being a real separable Hilbert space, it is isometrically isomorphic to either IRN (with N ≥ 1) or
L2(IR+). Let us assume that H ' L2(IR+), the case where H ' IRN being easier to handle. Let
Φ : H → L2(IR+) be an isometry. Set ek = Φ(Xk) for each k ≥ 1. We have

ρ(k − l) = IE[XkXl] =

∫ ∞
0

ek(x)el(x)dx, k, l ≥ 1 (35)

If B = (Bt)t≥0 denotes a standard Brownian motion, we deduce that

{Xk}k≥1
law
=

{∫ ∞
0

ek(t)dBt

}
k≥1

,

these two families being indeed centered, Gaussian and having the same covariance structure (by
construction of the ek’s). On the other hand, for any function e ∈ L2(IR+) such that ‖e‖L2(IR+) = 1,
we have

Hq

(∫ ∞
0

e(t)dBt

)
= IBq (e⊗q)

= q!

∫ ∞
0

dBt1e(t1)

∫ t1

0
dBt2e(t2) . . .

∫ tq−1

0
dBtqe(tq).

(36)

Let us go back to the proof of (i), that is, to the proof of (31) for ϕ = Hq. Recall that the sequence
{ek} has be chosen for (35) to hold. Using (36), we can write Vn = IBq (fn), with

fn =
1√
n

n∑
k=1

e⊗qk .

We already showed that E[V 2
n ]→ σ2 as n→∞. So, according to fourth moment theorem, to get (i) it

remains to check that ‖fn ⊗r fn‖L2(IR2q−2r
+ )

→ 0 for any r = 1, . . . , q − 1. We have

fn ⊗r fn =
1

n

n∑
k,l=1

e⊗qk ⊗r e
⊗q
l =

1

n

n∑
k,l=1

〈ek, el〉rL2(IR+) e
⊗q−r
k ⊗ e⊗q−rl

=
1

n

n∑
k,l=1

ρ(k − l)r e⊗q−rk ⊗ e⊗q−rl ,
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implying in turn

‖fn ⊗r fn‖2L2(IR2q−2r
+ )

=
1

n2

n∑
i,j,k,l=1

ρ(i− j)rρ(k − l)r〈e⊗q−ri ⊗ e⊗q−rj , e⊗q−rk ⊗ e⊗q−rl 〉
L2(IR2q−2r

+ )

=
1

n2

n∑
i,j,k,l=1

ρ(i− j)rρ(k − l)rρ(i− k)q−rρ(j − l)q−r.

Observe that |ρ(k − l)|r|ρ(i − k)|q−r ≤ |ρ(k − l)|q + |ρ(i − k)|q. This, together with other obvious
manipulations, leads to the bound

‖fn ⊗r fn‖2L2(IR2q−2r
+ )

≤ 2

n

∑
k∈Z
|ρ(k)|q

∑
|i|<n

|ρ(i)|r
∑
|j|<n

|ρ(j)|q−r

≤ 2

n

∑
k∈Z
|ρ(k)|d

∑
|i|<n

|ρ(i)|r
∑
|j|<n

|ρ(j)|q−r

= 2
∑
k∈Z
|ρ(k)|d × n−

q−r
q

∑
|i|<n

|ρ(i)|r × n−
r
q

∑
|j|<n

|ρ(j)|q−r.

Thus, to get that ‖fn ⊗r fn‖L2(IR2q−2r
+ )

→ 0 for any r = 1, . . . , q − 1, it suffices to show that

sn(r) := n
− q−r

q

∑
|i|<n

|ρ(i)|r → 0 for any r = 1, . . . , q − 1.

Let r = 1, . . . , q − 1. Fix δ ∈ (0, 1) (to be chosen later) and let us decompose sn(r) into

sn(r) = n
− q−r

q

∑
|i|<[nδ]

|ρ(i)|r + n
− q−r

q

∑
[nδ]≤|i|<n

|ρ(i)|r =: s1,n(δ, r) + s2,n(δ, r).

Using Hölder inequality, we get that

s1,n(δ, r) ≤ n−
q−r
r

 ∑
|i|<[nδ]

|ρ(i)|q
r/q

(1 + 2[nδ])
q−r
q ≤ cst× δ1−r/q,

as well as

s2,n(δ, r) ≤ n−
q−r
r

 ∑
[nδ]≤|i|<n

|ρ(i)|q
r/q

(2n)
q−r
q ≤ cst×

 ∑
|i|≥[nδ]

|ρ(i)|q
r/q

.

Since 1 − r/q > 0, it is a routine exercise (details are left to the reader) to deduce that sn(r) → 0
as n → ∞. Since this is true for any r = 1, . . . , q − 1, this concludes the proof of (i). It remains
to show (ii), that is, convergence in law (31) whenever ϕ is a real polynomial. We shall use the
multidimensional Peccati–Tudor theorem. Let ϕ have the form of a real polynomial. In particular, it
admits a decomposition of the type ϕ =

∑N
q=d aqHq for some finite integer N ≥ d. Together with (i),

Peccati–Tudor Theorem yields that(
1√
n

n∑
k=1

Hd(Xk), . . . ,
1√
n

n∑
k=1

HN (Xk)

)
law→ N

(
0, diag(σ2

d, . . . , σ
2
N )
)
,

where σ2
q = q!

∑
k∈Z ρ(k)q, q = d, . . . , N . We deduce that

Vn =
1√
n

N∑
q=d

aq

n∑
k=1

Hq(Xk)
law→ N

0,
N∑
q=d

a2
qq!
∑
k∈Z

ρ(k)q

 ,

which is the desired conclusion in (ii) and conclude the proof of Theorem 9.
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4.2 Quadratic variation of the fractional Brownian motion

In this section, we aim to illustrate Theorem 6 in a concrete situation. More precisely, we shall use
Theorem 6 in order to derive an explicit bound for the second-order approximation of the quadratic
variation of a fractional Brownian motion on [0, 1]. Let BH = (BH

t )t≥0 be a fractional Brownian motion
with Hurst index H ∈ (0, 1). This means that BH is a centered Gaussian process with covariance
function given by

IE[BH
t B

H
s ] =

1

2

(
t2H + s2H − |t− s|2H

)
, s, t ≥ 0.

It is easily checked that BH is self-similar of index H and has stationary increments. Fractional
Brownian motion has been successfully used in order to model a variety of natural phenomena coming
from different fields, including hydrology, biology, medicine, economics or traffic networks. A natural
question is thus the identification of the Hurst parameter from real data. To do so, it is popular and
classical to use the quadratic variation (on, say, [0, 1]), which is observable and given by

Sn =

n−1∑
k=0

(BH
(k+1)/n −B

H
k/n)2, n ≥ 1.

For application of the fourth moment theorem in parameter estimation see also [4, 5, 10, 18].

Exercise 7. Let f : IR→ IR be a measurable function so that IE(f2(N)) < +∞, where N ∼ N (0, 1).
Prove that for fractional Brownian motion BH of Hurst index H ∈ (0, 1), as n→∞, we have

1

n

n∑
k=1

f(BH
k −BH

k−1)
L2

−→ IE(f(N)).

Using, Exercise 7, One may infer that

n2H−1Sn
proba→ 1 as n→∞. (37)

We deduce that the estimator Ĥn, defined as

Ĥn =
1

2
− logSn

2 log n
,

satisfies Ĥn
proba→ H as n→∞. To study the asymptotic normality, consider

Fn =
n2H

σn

n−1∑
k=0

[
(BH

(k+1)/n −B
H
k/n)2 − n−2H

] (law)
=

1

σn

n−1∑
k=0

[
(BH

k+1 −BH
k )2 − 1

]
,

where σn > 0 is so that IE[F 2
n ] = 1. We then have the following result.

Theorem 10. Let N ∼ N (0, 1) and assume that H ≤ 3/4. Then, limn→∞ σ
2
n/n = 2

∑
r∈Z ρ

2(r) if
H ∈ (0, 3

4), with ρ : Z→ IR given by

ρ(r) =
1

2

(
|r + 1|2H + |r − 1|2H − 2|r|2H

)
, (38)

and limn→∞ σ
2
n/(n log n) = 9

16 if H = 3
4 . Moreover, there exists a constant cH > 0 (depending only on

H) such that, for every n ≥ 1,

dTV (Fn, N) ≤ cH ×



1√
n

if H ∈ (0, 5
8)

(logn)3/2√
n

if H = 5
8

n4H−3 if H ∈ (5
8 ,

3
4)

1
logn if H = 3

4

. (39)
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As an immediate consequence of Theorem 10, provided H < 3/4 we obtain that

√
n
(
n2H−1Sn − 1

) law→ N
(
0, 2

∑
r∈Z

ρ2(r)
)

as n→∞, (40)

implying in turn
√
n log n

(
Ĥn −H

) law→ N
(
0,

1

2

∑
r∈Z

ρ2(r)
)

as n→∞. (41)

Indeed, we can write

log x = x− 1−
∫ x

1
du

∫ u

1

dv

v2
for all x > 0,

so that (by considering x ≥ 1 and 0 < x < 1)∣∣ log x+ 1− x
∣∣ ≤ (x− 1)2

2

{
1 +

1

x2

}
for all x > 0.

As a result,

√
n log n

(
Ĥn −H

)
= −
√
n

2
log(n2H−1Sn) = −

√
n

2
(n2H−1Sn − 1) +Rn

with

|Rn| ≤
(√
n(n2H−1Sn − 1)

)2
4
√
n

{
1 +

1

(n2H−1Sn)2

}
.

Using (37) and (40), it is clear that Rn
proba→ 0 as n→∞ and then that (41) holds true. Now, let us go

back to the proof of Theorem 10. We first need the following ancillary result.

Lemma 5. 1. For any r ∈ Z, let ρ(r) be defined by (38). If H 6= 1
2 , one has ρ(r) ∼ H(2H−1)|r|2H−2

as |r| → ∞. If H = 1
2 and |r| ≥ 1, one has ρ(r) = 0. Consequently,

∑
r∈Z ρ

2(r) <∞ if and only
if H < 3/4.

2. For all α > −1, we have
∑n−1

r=1 r
α ∼ nα+1

α+1 as n→∞.

Proof. 1. The sequence ρ is symmetric, that is, one has ρ(n) = ρ(−n). When r →∞,

ρ(r) = H(2H − 1)r2H−2 + o(r2H−2).

Using the usual criterion for convergence of Riemann sums, we deduce that
∑

r∈Z ρ
2(r) <∞ if and

only if 4H − 4 < −1 if and only if H < 3
4 .

2. For α > −1, we have:

1

n

n∑
r=1

( r
n

)α
→
∫ 1

0
xαdx =

1

α+ 1
as n→∞.

We deduce that
∑n

r=1 r
α ∼ nα+1

α+1 as n→∞.

We are now in position to prove Theorem 10.

Proof of Theorem 10. Without loss of generality, we will rather use the second expression of Fn:

Fn =
1

σn

n−1∑
k=0

[
(BH

k+1 −BH
k )2 − 1

]
.

Consider the linear span H of (BH
k )k∈N, that is, H is the closed linear subspace of L2(Ω) generated

by (BH
k )k∈N. It is a real separable Hilbert space and, consequently, there exists an isometry Φ : H →

L2(IR+). For any k ∈ IN, set ek = Φ(BH
k+1 −BH

k ); we then have, for all k, l ∈ N,∫ ∞
0

ek(s)el(s)ds = IE[(BH
k+1 −BH

k )(BH
l+1 −BH

l )] = ρ(k − l) (42)
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with ρ given by (38). Therefore,

{BH
k+1 −BH

k : k ∈ IN} law
=

{∫ ∞
0

ek(s)dBs : k ∈ IN

}
=
{
IB1 (ek) : k ∈ IN

}
,

where B is a Brownian motion and IBp (·), p ≥ 1, stands for the pth multiple Wiener-Itô integral
associated to B. As a consequence we can, without loss of generality, replace Fn by

Fn =
1

σn

n−1∑
k=0

[(
IB1 (ek)

)2 − 1
]
.

Now, using the product formula for multiple stochastic integrals, we deduce that

Fn = IB2 (fn), with fn =
1

σn

n−1∑
k=0

ek ⊗ ek.

By using the same arguments as in the proof of Theorem 9, we obtain the exact value of σn:

σ2
n = 2

n−1∑
k,l=0

ρ2(k − l) = 2
∑
|r|<n

(n− |r|)ρ2(r).

Assume that H < 3
4 and write

σ2
n

n
= 2

∑
r∈Z

ρ2(r)

(
1− |r|

n

)
1{|r|<n}.

Since
∑

r∈Z ρ
2(r) <∞ by Lemma 5, we obtain by dominated convergence that, when H < 3

4 ,

lim
n→∞

σ2
n

n
= 2

∑
r∈Z

ρ2(r). (43)

Assume now that H = 3
4 . We then have ρ2(r) ∼ 9

64|r| as |r| → ∞, implying in turn

n
∑
|r|<n

ρ2(r) ∼ 9n

64

∑
0<|r|<n

1

|r|
∼ 9n log n

32

and ∑
|r|<n

|r|ρ2(r) ∼ 9

64

∑
|r|<n

1 ∼ 9n

32

as n→∞. Hence, when H = 3
4 ,

lim
n→∞

σ2
n

n log n
=

9

16
. (44)

On the other hand, recall that the convolution of two sequences {u(n)}n∈Z and {v(n)}n∈Z is the sequence
u ∗ v defined as (u ∗ v)(j) =

∑
n∈Z u(n)v(j − n), and observe that (u ∗ v)(l− i) =

∑
k∈Z u(k− l)v(k− i)

whenever u(n) = u(−n) and v(n) = v(−n) for all n ∈ Z. Set

ρn(k) = |ρ(k)|1{|k|≤n−1}, k ∈ Z, n ≥ 1.

We then have (using (15), and noticing that fn ⊗1 fn = fn⊗̃1fn),

IE

[(
1− 1

2
‖D[IB2 (fn)]‖2L2(IR+)

)2
]

= 8 ‖fn ⊗1 fn‖2L2(IR2
+)

=
8

σ4
n

n−1∑
i,j,k,l=0

ρ(k − l)ρ(i− j)ρ(k − i)ρ(l − j)

≤ 8

σ4
n

n−1∑
i,l=0

∑
j,k∈Z

ρn(k − l)ρn(i− j)ρn(k − i)ρn(l − j)

=
8

σ4
n

n−1∑
i,l=0

(ρn ∗ ρn)(l − i)2 ≤ 8n

σ4
n

∑
k∈Z

(ρn ∗ ρn)(k)2 =
8n

σ4
n

‖ρn ∗ ρn‖2`2(Z).
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Recall Young’s inequality: if s, p, q ≥ 1 are such that 1
p + 1

q = 1 + 1
s , then

‖u ∗ v‖`s(Z) ≤ ‖u‖`p(Z)‖v‖`q(Z). (45)

Let us apply (45) with u = v = ρn, s = 2 and p = 4
3 . We get ‖ρn ∗ ρn‖2`2(Z) ≤ ‖ρn‖

4

`
4
3 (Z)

, so that

E

[(
1− 1

2
‖D[IB2 (fn)]‖2L2(IR+)

)2
]
≤ 8n

σ4
n

∑
|k|<n

|ρ(k)|
4
3

3

. (46)

Recall the asymptotic behavior of ρ(k) as |k| → ∞ from Lemma 5(1). Hence

∑
|k|<n

|ρ(k)|
4
3 =


O(1) if H ∈ (0, 5

8)
O(log n) if H = 5

8

O(n(8H−5)/3) if H ∈ (5
8 , 1).

(47)

Assume first that H < 3
4 and recall (43). This, together with (46) and (47), imply that

IE

[∣∣∣∣1− 1

2
‖D[IB2 (fn)]‖2L2(IR+)

∣∣∣∣] ≤
√√√√IE

[(
1− 1

2
‖D[IB2 (fn)]‖2

L2(IR+)

)2
]

≤ cH ×



1√
n

if H ∈ (0, 5
8)

(logn)3/2√
n

if H = 5
8

n4H−3 if H ∈ (5
8 ,

3
4)

.

Therefore, the desired conclusion holds for H ∈ (0, 3
4) by applying Theorem 6. Assume now that H = 3

4
and recall (44). This, together with (46) and (47), imply that

IE

[∣∣∣∣1− 1

2
‖D[IB2 (fn)]‖2L2(IR+)

∣∣∣∣] ≤
√√√√IE

[(
1− 1

2
‖D[IB2 (fn)]‖2

L2(IR+)

)2
]

= O(1/ log n),

and leads to the desired conclusion for H = 3
4 as well.

Part IV

Markov triplet approach

4.3 The setup: fourth moment theorem and new moments estimates

Recall that for any X ∈ Hp (the pth Wiener chaos), we have L(X) = −pX, where L stands for
Ornstein-Uhlenbeck operator. In the language of operator theory, we can write

Hp = Ker(L + pId), ∀ p ≥ 1.

We also define the associated carré-du-champ operator Γ (for X,Y ∈ dom(L) such that XY ∈ dom(L))
as:

Γ[X,Y ] :=
1

2
{L(XY )− Y LX −XLY } .

Note that according to Exercise 5, part (a), in the first sheet, we have in fact that Γ[X,Y ] = 〈DX,DY 〉.
In particular, Γ[X,X] = Γ[X] = ‖DX‖2. In below, we summarize the fundamental properties of the
Ornstein-Uhlenbeck operator L.
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(a) Diffusion: For any text function φ : IR→ IR, and any nice X in the domain, it holds that

Γ [φ(X), X] = φ′(X)Γ[X,X].

Or Equivalently,
L [φ(X)] = φ′(X)L[X] + φ′′(X)Γ[X,X]. (48)

Note that, by taking φ = 1, we get L[1] = 0 which is called the Markov property.

(b) Spectral decomposition: The operator −L is diagonalizable on L2(IP) with sp(−L) = IN, that is
to say:

L2(IP) =

∞⊕
i=0

Ker(L + iId).

(c) Spectral stability: For any pair of eigenfunctions (X,Y ) of the operator −L associated with
eigenvalues (p1, p2),

XY ∈
⊕

i≤p1+p2

Ker (L + iId) . (49)

Remark 14. (i) Property (a) is important regarding functional calculus. Using property (a) the
Malliavin integration by parts formula reads to: for any X,Y in dom(L) and any text function φ
we have that

IE
[
φ′(X)Γ [X,Y ]

]
= −IE [φ(X)L [Y ]] = −IE [Y L [φ(X)]] . (50)

(ii) Property (b) allows to use spectral theory. Actually, we stress that our results hold true under
the weaker assumption that sp(−L) = {λi ; i ∈ IN} ⊂ IR+ is simply discrete so that λmi ≤ mλi
for all m ∈ IN and i ≥ 1. However, we stick to the assumption sp(−L) = IN since it encompasses
the most common cases (Wiener space and Laguerre space). The reader interested in relaxing
this spectral assumption can consult [1] where the spectrum is only assumed to be discrete.

(iii) Property (c) is our main assumption, which will allow us to obtain fundamental spectral
inequalities. A simple induction on (49) shows that, for any X ∈ Ker(L + pId) and any
polynomial P of degree m, we have

P (X) ∈
⊕
i≤mp

Ker (L + iId) . (51)

Now, we are in the position to give another (very simple) proof of the fourth moment theorem
relying only on assumptions (a)-(b)-(c).

Theorem 11. Let X ∈ Hp be an eigenfunction of the operator L with eigenvalue −p, i.e. LX = −pX.
Then

IE
[
(Γ[X]− p)2

]
≤ p2

6

{
IE[X4]− 6IE[X2] + 3

}
.

Hence, for a sequence {Xn}n≥1 ∈ Ker(L + pId) such that IE[X2
n] → 1, the convergence IE[X4

n] → 3
implies that Xn converges in distribution towards N ∼ N (0, 1).

Proof. First note that Γ[X] − p = (L + pId)1
2H2(X), where H2(x) = x2 − 1 is the second Hermite

polynomial. Also, for any i ≥ 1, denote Ji : L2(IP)→ Ker (L + iId) the orthogonal projections onto
the subspace Ker (L + iId). Then
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IE
[
(Γ[X]− p)2

]
= IE

[
(L + pId)

1

2
H2(X)2

]
=

1

4
IE [LH2(X)(L + pId)H2(X)] +

p

4
IE [H2(X)(L + pId)H2(X)]

=
1

4

2p∑
i=1

(−i)(p− i)IE
[
Ji(H2(X))2

]
+
p

4
IE [H2(X)(L + pId)H2(X)]

≤ p

2
IE

[
H2(X)(L + pId)

1

2
H2(X)

]
=
p

2

{
IE [H2(X)Γ[X]]− pIE [H2(X)]

}
=
p

2

{1

3
IE [Γ[H3(X), X]]− pIE[X2] + p

}
=
p

2

{1

3
IE [−H3(X)LX]− pIE[X2] + p

}
=
p

2

{p
3

IE [XH3(X)]− pIE[X2] + p
}

(H3(x) = x3 − 3x)

=
p2

6

{
IE[X4]− 6IE[X2] + 3

}
.

For the last part note that

IE[X4]− 6IE[X2] + 3 = IE[X4]− 3IE[X2]2 + 3(IE[X2]− 1)2.

Towards generalization, now we explore the idea used in the previous proof. Let IRk[T ] stand for
the ring of all polynomials of T of degree at most k over IR. Let X ∈ Hp be an eigenfunction of the
generator L with eigenvalue −p, i.e. −LX = pX. We consider the following map:

Mk :

{
IRk[T ]× IRk[T ] −→ IR

(P,Q) 7−→ IE
[
Q(X)(L + kpId)P (X)

]
.

Remark 15. Notice that the mapping Mk strongly depends on the eigenfunction X. We also remark
that thanks to Hyperconractivity property, Mk is well defined.

Theorem 12. The mapping Mk is bilinear, symmetric and non-negative. Moreover its matrix
representation over the canonical basis {1, T, T 2, · · · , T k} is given by pMk where

Mk =
(

(k − ij

i+ j − 1
)IE[Xi+j ]

)
0≤i,j≤k

(52)

with the convention that ij
i+j−1 = 0 for (i, j) = (0, 1) or (1, 0).

Proof. Expectation is a linear operator, so the bilinearity property follows. Symmetry proceeds from
the symmetry of the diffusive generator L. To prove positivity of the matrix Mk, using the fundamental
assumption (51) we obtain that for any polynomial P of degree ≤ k,

P (X) ∈
⊕
i≤kp

Ker(L + iId).

Therefore,

IE[
(
(L + kpId)P (X)

)2
] = IE[LP (X)(L + kpId)P (X)]

+ kpIE[P (X)(L + kpId)P (X)]

=

kp∑
i=0

(−i)(kp− i)IE[J2
i (P (X))]

+ kpIE[P (X)(L + kpId)P (X)]

≤ kpMk(P, P ).

(53)
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Hence Mk is a positive form. To complete the proof, notice that the (i, j)-component of the matrix
Mk is given by IE

[
Xj(L + kpId)Xi

]
. So, using the diffusive property of the generator L, we obtain

Xj(L + kpId)Xi = i(i− 1)Xi+j−2Γ(X) + p(k − i)Xi+j

=
i(i− 1)

i+ j − 1
Γ(Xi+j−1, X) + p(k − i)Xi+j .

Therefore

Mk(X
i, Xj) =

i(i− 1)

i+ j − 1
IE[Γ(Xi+j−1, X)] + p(k − i)IE[Xi+j ]

= p
i(i− 1)

i+ j − 1
IE
[
Xi+j

]
+ p(k − i)IE

[
Xi+j

]
= p
( i(i− 1) + (k − i)(i+ j − 1)

i+ j − 1

)
IE
[
Xi+j

]
= p
(
k − ij

i+ j − 1

)
IE
[
Xi+j

]
.

Therefore, (i) all the eigenvalues of matrix Mk are non-negative and (ii) all the lth leading principal
minor of the matrix Mk are non-negative for l ≤ k.

The moments matrix Mk can help one to give non-trivial moment inequalities, sometimes sharper
than the existing estimates so far, involving the moments of the eigenfunctions of a generator L. Here
is an application where we sharpen the standard fourth moment inequality IE[X4] ≥ 3IE[X2]2.

Theorem 13. If X is a non-zero eigenfunction of generator L, then

IE[X4]

3
− IE[X2]2 ≥ IE[X3]2

2IE[X2]
. (54)

Proof. The moments matrix M2 associated to X is given by

M2(X) =

 2 0 2IE[X2]
0 IE[X2] IE[X3]

2IE[X2] IE[X3] 2
3 IE[X4]

 . (55)

Hence, we infer that

det(M2) = 4IE[X2]
{ IE[X4]

3
− IE[X2]2

}
− 2IE[X3]2 ≥ 0,

which immediately implies (54).

Remark 16. We stress that for a sequence Xn ∈ Ker(L + pId) for each n ≥ 1, the convergence

IE[X4
n]

3
− IE[X2

n]2 − IE[X3]2

2IE[X2]
→ 0, (56)

does not necessarily imply that Xn converges in distribution towards N (0, 1). The reason is that the
convergence (56) does not guarantees that IE[X3

n]→ 0!.

The following proposition states a non-trivial inequality between the second, fourth and sixth
moments of eigenfunctions of L.

Proposition 10. If X is an eigenfunction of L, then

IE[X4]2 ≤ 3

5
IE[X6]IE[X2]. (57)

Notice that this inequality is an equality when the distribution of X is Gaussian.
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Proof. The moments matrix M3 associated to X has the form

M3 =


3 ? 3IE[X2] ?
? 2IE[X2] ? 2IE[X4]

3IE[X2] ? 5
3 IE[X4] ?

? 2IE[X4] ? 6
5 IE[X6]

 . (58)

Since this matrix is positive, we have in particular∣∣∣∣ 2IE[X2] 2IE[X4]
2IE[X4] 6

5 IE[X6]

∣∣∣∣ ≥ 0,

which gives the claimed inequality.

Using Proposition 10, we can prove the following interesting sixth moment theorem.

Corollary 8. A sequence {Xn}n≥1 such that Xn ∈ Ker(L + pId) for each n ≥ 1, converges in
distribution toward the standard Gaussian law if and only if IE[X2

n]→ 1 and IE[X6
n]→ 15.

Proof. By Proposition (10), for X ∈ Ker (L + pId), we have

IE[X6] ≥ 5

3

IE[X4]2

IE[X2]
≥ 5

3

(3IE[X2]2)2

IE[X2]
= 15IE[X2]3.

Therefore, for the sequence {Xn}n≥1 in Ker (L + pId), if IE[X2
n]→ 1 and IE[X6

n]→ 15, then from the
previous chain of inequalities, we deduce that IE[X4

n]→ 3. Hence, the sequence {Xn}n≥1 converges in
distribution toward N (0, 1) according to the fourth moment theorem.

Exercise 8. Let X ∈ Ker(L + pId) for some p ≥ 2 such that IE[X2] = 1. Using Proposition 10, show
that if p be an odd integer and κ4(X) ≥ 3, then κ6(X) ≥ 0. Recall that

κ6(X) = IE[X6]− 15IE[X2]IE[X4]− 10IE[X3]2 + 30IE[X2]3.

[Hint: if p be odd then IE[X3] = 0. See [13, Remark 8.4.5]. Any idea how to relax the condition
κ4(X) ≥ 3?

Exercise 8 propels us to the following conjecture (known as Γ2- conjecture). It is related to
the non-Gaussian target distribution N1 ×N2 where N1, N2 ∼ N (0, 1) are independent, see the next
section for more details.

Conjecture 1. For any X ∈ Ker(L + pId), we have that κ6(X) ≥ 0. In fact, in a different context
some computations suggest that

Var(Γ2[X]) ≤ Cp κ6(X),

where Γ2[X] := 1
pΓ[X,−L−1Γ[X]]. This has to be compared with the fact that

Var(Γ[X]) ≤ Cpκ4(X).

4.4 New central limit theorems: The even moment theorem and generalization

The main goal of this section is to proof the following substantial generalization of the fourth moment
theorem called the even moment theorem allowing to replace the fourth moment with any even moments
in the fourth moment theorem !

Theorem 14. Let L be a Ornstein-Uhlenbeck generator (and so having properties (a)-(b)-(c)), p ≥ 1
be an eigenvalue of −L, and {Xn}n≥1 a sequence of elements in Ker (L + pId) for all n ≥ 1, such that
limn→∞ IE

[
X2
n

]
= 1. Then, for any integer k ≥ 2, as n→∞, we have

Xn
law→ N (0, 1) if and only if IE[X2k

n ]→ IE[N2k] = (2k − 1)!!. (59)
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To this end, let us go really further and explore more the positivity of the bilinear mapping Mk

for every k ≥ 1. We denote by {Hk}k≥0 the family of Hermite polynomials defined (as before) by the
recursive relation

H0(x) = 1, H1(x) = x, Hk+1(x) = xHk(x)− kHk−1(x). (60)

Let us first recall that H ′k = kHk−1. For any k ≥ 2, we define the polynomial Wk as

Wk(x) = (2k − 1)
(
x

∫ x

0
Hk(t)Hk−2(t)dt−Hk(x)Hk−2(x)

)
, (61)

and the family P as

P =
{
P
∣∣∣ P (x) =

m∑
k=2

αkWk(x); m ≥ 2, αk ≥ 0, 2 ≤ k ≤ m
}
. (62)

The family P encodes interesting properties of central convergence which are the content of the two
next lemmas.

Lemma 6. Let L be a Ornstein-Uhlenbeck generator (and so having properties (a)-(b)-(c)). Let P be
a polynomial belonging to P. Then

(1) If N ∼ N (0, 1), IE[P (N)] = 0.

(2) If X is an eigenvalue of L, IE[P (X)] ≥ 0.

Proof. It is enough to prove that E[Wk(X)] ≥ 0 and E[Wk(N)] = 0. Using the diffusive property (48),
the fact that −LX = pX and the recursive property of Hermite polynomials, we obtain that

(L + kp Id)Hk(X) = H
′′
k (X)Γ(X) +H

′
k(X)L(X) + kpHk(X)

= H
′′
k (X)Γ(X)− pXH ′k(X) + kpHk(X)

= H
′′
k (X)

(
Γ(X)− p

)
= k(k − 1)Hk−2(X)

(
Γ(X)− p

)
.

(63)

Therefore,

Mk(Hk) = IE
[
Hk(X) (L + kp Id)Hk(X)

]
= k(k − 1)IE

[
Hk(X)Hk−2(X)

(
Γ(X)− p

)]
.

(64)

Next, by the integration by parts formula (50), we have

IE
[
Hk(X)Hk−2(X)

(
Γ(X)− p

)]
= IE

[
Γ

(∫ X

0
Hk(t)Hk−2(t)dt,X

)]
− pIE [Hk(X)Hk−2(X)]

= p IE
[
X

∫ X

0
Hk(t)Hk−2(t)dt−Hk(X)Hk−2(X)

]
=

p

2k − 1
IE
[
Wk(X)

]
.

(65)

Hence,

Mk(Hk) =
pk(k − 1)

2k − 1
IE
[
Wk(X)

]
,

and the inequality IE[Wk(X)] ≥ 0 follows from the positivity of the bilinear formMk. Finally, choosing
X = N be a standard Gaussian random variable living in the first Wiener chaos (i.e. p = 1) with
variance 1, then Γ(N) = p = 1 and computation (65) shows that IE[Wk(N)] = 0 for every k ≥ 2. Hence
IE[P (N)] = 0 for every P ∈P.
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Lemma 7. Let L be a Ornstein-Uhlenbeck generator (and so having properties (a)-(b)-(c)). Let p ≥ 1
and {Xn}n≥1 a sequence of elements in Ker (L + pId) for all n ≥ 1. Let P =

∑m
k=2 αkWk ∈P such

that α2 6= 0. Then, as n→∞, we have

Xn
law→ N (0, 1) if and only if IE[P (Xn)]→ IE[P (N)] = 0.

Proof. In virtue of Lemma 6,

IE[P (Xn)] =

m∑
k=2

αkIE[Wk(Xn)]

≥ α2IE[W2(Xn)]

= α2

(
IE[X4

n]− 6IE[X2
n] + 3

)
.

This leads to

0 ≤ IE[X4
n]− 6IE[X2

n] + 3 ≤ 1

α2
IE[P (Xn)].

By assumption, IE[P (Xn)]→ 0, so IE[X4
n]− 6IE[X2

n] + 3→ 0. On the other hand

IE[X4
n]− 6IE[X2

n] + 3 = IE[X4
n]− 3IE[X2

n]2 + 3(IE[X2
n]− 1)2.

Thus, we obtain that IE[X2
n] → 1 and IE[X4

n] → 3, and we can use fourth moment Theorem to
conclude.

Proof. Proof of Theorem 14: Taking into account Lemmas 6 and 7, we are left to find a suitable
polynomial Tk ∈P of the form

Tk(x) = x2k − αkx2 + βk, αk, βk ∈ IR. (66)

Stress that for such a polynomial, according to Lemma 6, the function φk : x 7→ IE[Tk(xN)] must be
positive and vanish at x = 1. Hence, we must have φk(1) = φ′k(1) = 0. This leads us to the following
system of equations {

(2k − 1)!!− αk + βk = 0,
2k (2k − 1)!!− 2αk = 0.

Therefore, the coefficients αk and βk are necessarily given by

αk = k (2k − 1)!! and βk = (k − 1) (2k − 1)!!.

It remains to check that the corresponding polynomial

Tk(x) = x2k − k (2k − 1)!! x2 + (k − 1) (2k − 1)!! ∈P.

To this end, one needs to show that Tk can be expanded over the polynomials {Wk}k≥2 with positive
coefficients. This is the message of the next proposition. It turns out that the coefficient α2,k in front
of the polynomial W2 is strictly positive, and so one can conclude the proof by using Lemma 7. In fact,
the proof of the next Proposition is rather involved and the interested reader can consult [2, Appendix]
for details.

Proposition 11. Let k ≥ 2, and Tk(x) = x2k − k (2k − 1)!! x2 + (k − 1) (2k − 1)!!. Then

Tk(x) =
k∑
i=2

αi,kWi(x), (67)

where

αi,k =
(2k − 1)!!

2i−1(2i− 1)(i− 2)!

(
k
i

)∫ 1

0
(1− u)−1/2ui−2

(
1− u

2

)k−i
du.

In particular, Tk ∈P and α2,k > 0 for all k ≥ 1.
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A natural question: is it possible to replace the second moment with some other even moments
in the even moment theorem 14? To be more precise, let N ∼ N (0, 1), and assume that for some
pair (k, l) of positive integers (k 6= l), we have IE[X2k

n ]→ IE[N2k] and IE[X2l
n ]→ IE[N2l]. We want to

know if this implies that Xn converges in distribution toward N (0, 1). Our approach (as in the even
moment theorem 14) would consist in deducing the existence of a non-trivial polynomial Tk,l ∈P such
that IE [Tk,l(Xn)]→ 0. Natural candidates are polynomials of the form

Tk,l(x) = x2l + αx2k + β,

where α, β ∈ IR. Using the same arguments as in the proof of Theorem 14, one can show that the

condition P ∈P entails necessarily that α = l(2l−1)!!
k(2k−1)!! and β =

(
l
k − 1

)
(2k − 1)!!. Then, the question

becomes: does the polynomial Tk,l belong to family P? We exhibit the decomposition of Tk,l for each
pair of integers in the set Θ = {(2, 3); (2, 4); (2, 5); (3, 4); (3, 5)}:

T2,3(x) = x6 − 15
2
x4 + 15

2
= W3(x) + 5

2
W2(x)

T2,4(x) = x8 − 70x4 + 105 = W4(x) + 84
5
W3(x) + 28W2(x)

T2,5(x) = x10 − 1575
2

x4 + 2835
2

= W5(x) + 180
7

W4(x) + 234W3(x) + 585
2

W2(x)

T3,4(x) = x8 − 28
3
x6 + 35 = W4(x) + 112

5
W3(x) + 14

3
W2(x)

T3,5(x) = x10 − 105x6 + 630 = W5(x) + 180
7

W4(x) + 129W3(x) + 30W2(x).

The coefficients of each decomposition are positive, thus, for each pair (k, l) ∈ Θ, the convergence
of the 2kth and 2lth moments entails the central convergence. Unfortunately, it comes up that the
polynomial T4,5 does not belong to family P:

T4,5(x) = x10 − 45

4
x8 +

945

4
= W5(x) +

405

28
W4(x) +W3(x) -

45

2
W2(x).

Consequently, the convergence of the 8th and 10th moments for characterizing central convergence
remains an open problem in the field!

4.5 Gaussian product conjecture

Here we aim to give another application of the Markov triplet approach in one of the outstanding
conjecture in probability theory known as Gaussian product conjecture. See [11] and some other
works by late Wenbo. Li (http://wenbo.li.muchloved.com/).

Conjecture 2. Let (X1, · · · , Xd) be a center Gaussian vector. The Gaussian product conjecture states
that for all r ≥ 1:

IE
(
X2r

1 × · · · ×X2r
d

)
≥ IE(X2r

1 )× · · · × IE(X2r
d ).

Remark 17. (i) Case r = 1 solved by Frenkel [9] using exclusively tools taken from linear algebra
such as Hafnians, Pfaffians.

(ii) Case r = 2 remains unsolved but supported by computer simulations.

(iii) The case of complex Gaussian solved by Arias de Reyna (1998).

Now, we are going to give a new proof of Gaussian product conjecture for the case r = 2, and at
the same time generalize it to random vectors having multiple integrals in entries possibly of different
orders.

Theorem 15. [12] Let X = (X1, · · · , Xd) = (Ip1(f1), · · · , Ipd(fd)), and pi ≥ 1 for all 1 ≤ i ≤ d. Then

IE
(
X2

1 × · · · ×X2
d

)
≥ IE(X2

1 )× · · · × IE(X2
d).
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Proof. Since X1, · · · , Fd are eigenfunctions of L with eigenvalues p1, · · · , pd, therefore

X1 × · · · ×Xd ∈
⊕

i≤p1+···+pd

Ker(L + iId).

Hence,

IE
(
X1 × · · · ×Xd(L + (p1 + · · ·+ pd)Id)[X1 × · · · ×Xd]

)
≥ 0.

Using the relation between operators L and Γ one has

(L + (p1 + · · ·+ pd)Id)[X1 × · · · ×Xd] =
∑
i 6=j

∏
k 6=i,j

Xk

 Γ[Xi, Xj ].

Therefore,

IE

∏
i

Xi

∑
i 6=j

∏
k 6=i,j

Xk

 Γ[Xi, Xj ]

 ≥ 0.

Equivalently, by Malliavin integration by parts, we have

d∑
i=1

IE
(

L[X2
i ]
∏
j 6=i

X2
j

)
≤ 0.

Now, we proceed with induction on the orders of involved multiple integrals. Using again relation
between L and Γ: L[X2

i ] = 2Γ[Xi, Xi]− 2piX
2
i , we infer that

(p1 + · · ·+ pd)IE
(
X2

1 × · · · ×X2
d

)
=

d∑
i=1

IE
(

Γ[Xi, Xi]
∏
j 6=i

X2
j

)

− 1

2

d∑
i=1

IE
(
L[X2

i ]
∏
j 6=i

X2
j

)
.

Therefore,

(p1 + · · ·+ pd)IE
(
X2

1 × · · · ×X2
d

)
≥

d∑
i=1

IE
(

Γ[Xi, Xi]
∏
j 6=i

X2
j

)
.

Now, using the fact that Γ[Xi, Xi] = ‖DtXi‖2L2(µ) = ‖piIpi−1(fi(t, •))‖2, stochastic Fubini Theorem,
and induction, we obtain that

d∑
i=1

IE
(

Γ[Xi, Xi]
∏
j 6=i

X2
j

)
=

d∑
i=1

IE
(∫

A
p2
i I

2
pi−1(fi(t, •))µ(dt)×

∏
j 6=i

X2
j

)
,

=

d∑
i=1

∫
A
p2
i IE
(
I2
pi−1(fi(t, •))×

∏
j 6=i

X2
j

)
µ(dt)

≥
d∑
i=1

∫
A
p2
i IE(I2

pi−1(fi(t, •)))µ(dt)×
∏
j 6=i

IE(X2
j ), (by induction)

=

d∑
i=1

IE
(
p2
i

∫
A
I2
pi−1(fi(t, •))µ(dt)

)
×
∏
j 6=i

IE(X2
j )

=

d∑
i=1

IE[Γ(Xi, Xi)]×
∏
j 6=i

IE(X2
j )

=

d∑
i=1

piIE(X2
i )×

∏
j 6=i

IE(X2
j ) = (p1 + · · ·+ pd)IE(X2

1 )× · · · × IE(X2
d).
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5 Non-Gaussian target distributions

5.1 Cumulant and Malliavin operators

It will turn out that cumulants play more transparent role for convergence toward non-Gaussian target
distributions. Main references for this section are [3, 8, 16]. Hence, our first aim is to provide an
explicit representation of cumulants in terms of Malliavin operators. To this end, it is convenient to
introduce the following Malliavin objects that naturally appear using repetition of Malliavin integration
by part formula.

Definition 6. Let F ∈ D∞, i.e. infinitely times Malliavin differentiable. The sequence of random
variables {Γi(F )}i≥0 ⊂ D∞ is recursively defined as follows. Set Γ0(F ) = F and, for every i ≥ 1,

Γi(F ) = 〈DF,−DL−1Γi−1(F )〉.

For instance, one has that Γ1(F ) = 〈DF,−DL−1F 〉. The following statement provides an explicit
expression for Γs(F ), s ≥ 1, when F has the form of a multiple integral.

Proposition 12 (See e.g. Chapter 8 in [13]). Let p ≥ 2, and assume that F = Ip(f). Then, for any
i ≥ 1, we have

Γi(F ) =

p∑
r1=1

. . .

[ip−2r1−...−2ri−1]∧p∑
ri=1

cp(r1, . . . , ri)1{r1<p} . . .1{r1+...+ri−1<
ip
2
}

× I(i+1)p−2r1−...−2ri

(
(...(f⊗̃r1f)⊗̃r2f) . . . f)⊗̃rif

)
,

where the constants cp(r1, . . . , ri−2) are recursively defined as follows:

cp(r) = p(r − 1)!

(
p− 1

r − 1

)2

,

and, for a ≥ 2,

cp(r1, . . . , ra)

=p(ra−1)!

(
ap− 2r1 − . . .− 2ra−1 − 1

ra − 1

)(
p− 1

ra − 1

)
cp(r1, . . . , ra−1).

Example 4. Let F = Ip(f) for some p ≥ 2. Then

Γ1(F ) = p

p∑
r=1

(r − 1)!

(
p− 1

r − 1

)2

I2p−2r(f⊗̃rf)

Γ2(F ) =

p∑
r=1

(2p−2r)∧p∑
s=1

p2(r − 1)!(s− 1)!

(
p− 1

r − 1

)2(p− 1

s− 1

)(
2p− 2r − 1

s− 1

)
I3p−2r−2s

(
(f⊗̃rf)⊗̃sf

)
The following statement explicitly connects the expectation of the random variables Γi(F ) to the

cumulants of F .

Proposition 13 (See again Chapter 8 in [13]). Let F ∈ D∞. Then F has finite moments of every
order, and the following relation holds for every i ≥ 0:

κi+1(F ) = i!IE[Γi(F )]. (68)

Lemma 8. Let X ∈ D∞. Then, the relation

IE(φ(k)(X)Γr(X)) (69)

= IE(Xφ(k−r)(X))−
r∑
s=1

IE(φ(k−s)(X))IE(Γr−s(X))

holds for every k-times continuously differentiable mapping φ : IR→ IR.

Proof. Use Malliavin integration by part formula (many times) together with Proposition 13.
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5.2 Some relevant properties of the second Wiener chaos

In this subsection, we gather together some properties of the elements of the second Wiener chaos of
the Gaussian random measure G with control measure µ; recall that these are random variables having
the general form F = I2(f), with f ∈ L2(µ2). Notice that, if f = h⊗ h, where h ∈ L2(µ) is such that

‖h‖ = 1, then using the product formula, one has I2(f) = I1(h)2 − 1
law
= N2 − 1, where N ∼ N (0, 1).

To any symmetric kernel f ∈ L2(µ2), we associate the following Hilbert-Schmidt operator

Af : L2(µ) 7→ L2(µ); g 7→ f ⊗1 g.

It is also convenient to introduce the sequence of auxiliary kernels{
f ⊗(p)

1 f : p ≥ 1
}
⊂ L2

sym(µ2) (70)

defined as follows: f ⊗(1)
1 f = f , and, for p ≥ 2,

f ⊗(p)
1 f =

(
f ⊗(p−1)

1 f
)
⊗1 f . (71)

In particular, f ⊗(2)
1 f = f ⊗1 f . Finally, we write {αf,j}j≥1 and {ef,j}j≥1, respectively, to indicate the

(not necessarily distinct) eigenvalues of Af and the corresponding eigenvectors.

Proposition 14 (See e.g. Section 2.7.4 in [13]). Fix F = I2(f) with symmetric kernel f ∈ L2(µ2).

1. The following equality holds: F =
∑

j≥1 αf,j
(
N2
j − 1

)
, where {Nj}j≥1 is a sequence of i.i.d.

N (0, 1) random variables, and the series converges in L2 and almost surely.

2. For any i ≥ 2,

κi(F ) = 2i−1(i− 1)!
∑
j≥1

αif,j = 2i−1(i− 1)!× 〈f ⊗(i−1)
1 f, f〉L2(µ2).

3. The law of the random variable F is completely determined by its moments or equivalently by its
cumulants.

We now fix a symmetric kernel f∞ such that the its corresponding Hilbert-Schmidt operator Af∞
(see Section 5.2) has a finite number of non-zero eigenvalues, that we denote by {αi}ki=1. To simplify
the discussion, we assume that the eigenvalues are all distinct. We want to study convergence in
distribution towards the random variable

F∞ := I2(f∞) =

k∑
i=1

αi
(
N2
i − 1

)
, (72)

where {Ni}ki=1 is the family of i.i.d. N (0, 1) random variables appearing at Point 1 of Proposition 14.
Following Nourdin and Poly [16], we define the two crucial polynomials P and Q as follows:

Q(x) =
(
P (x)

)2
=
(
x

k∏
i=1

(x− αi)
)2
. (73)

Note that, by definition, the roots of Q and P correspond with the set {0, α1, ..., αk}. The following
lemma reveals the important role of the polynomials P and Q.
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Lemma 9. Let F = I2(f) be a generic element of the second Wiener chaos, and write {αf,j}j≥1 for
the set of the eigenvalues of the associated Hilbert-Schmidt operator Af we have

deg(Q)∑
r=2

Q(r)(0)

r!

κr(F )

2r−1(r − 1)!

=
∑
j≥1

Q(αf,j) (74)

=

∥∥∥∥∥
deg(P )∑
r=1

P (r)(0)

r!
f ⊗(r)

1 f

∥∥∥∥∥
2

L2(µ2)

(75)

=
1

2
IE

(
deg(P )∑
r=1

P (r)(0)

r! 2r−1

(
Γr−1(F )− IE(Γr−1(F ))

))2

, (76)

where the operators Γr(·) have been introduced in Definition 6. In particular, for the target random
variable F∞ introduced at (72) one has that

0 =

deg(Q)∑
r=2

Q(r)(0)

r!

κr(F∞)

2r−1(r − 1)!

=
1

2
IE

(
deg(P )∑
r=1

P (r)(0)

r! 2r−1

(
Γr−1(F∞)− IE(Γr−1(F∞))

))2

. (77)

Proof. In view of the second equality at Point 2 of Proposition 14, one has that κr(F )
2r−1(r−1)!

=
∑

j≥1 α
r
f,j ,

from which we deduce immediately (74). To prove (75), observe that Point 1 of Proposition 14,
together with the product formula, implies that the kernel f admits a representation of the type
f =

∑
j≥1 αf,jηj⊗ηj , where {ηj} is some orthonormal system in L2(µ) (recall that L2(µ) is a separable

Hilbert space). It follows that, for r ≥ 1, one has the representation f ⊗(r)
1 f =

∑
j≥1 α

r
f,jηj ⊗ ηj , and

therefore

deg(P )∑
r=1

P (r)(0)

r!
f ⊗(r)

1 f =
∑
j≥1

ηj ⊗ ηj
deg(P )∑
r=1

P (r)(0)

r!
αrf,j .

Taking norms on both sides of the previous relation and exploiting the orthonormality of the ηj yields
(75). Finally, in order to show (76), it is clearly enough to prove that, for any r ≥ 1,

I2(f ⊗(r)
1 f) =

1

2r−1

{
Γr−1(F )− IE(Γr−1(F ))

}
. (78)

We proceed by induction on r. It is clear for r = 1, because Γ0(F ) = F and IE(F ) = 0. Take r ≥ 2 and
assume that (78) holds true. Notice that, by definition of Γr(F ) and the induction assumption, one has

Γr(F )

= 〈DF,−DL−1Γr−1(F )〉L2(µ) =
〈

2I1(f(t, .)), 2r−1I1(f ⊗(r)
1 f(t, .))

〉
L2(µ)

= 2r
∫
A

{
〈f(t, .), f ⊗(r)

1 f(t, .)〉L2(µ) + I2

(
f(t, .)⊗ (f ⊗(r)

1 f)(t, .)
)}

dµ(t)

= 2r〈f, f ⊗(r)
1 f〉L2(µ2) + 2rI2(f ⊗(r+1)

1 f),

where we have used a standard stochastic Fubini Theorem. This proves that (78) is verified for every
r ≥ 1. The last assertion in the statement follows from (74), as well as the fact that the eigenvalues αi
are all roots of Q.
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Proposition 15. Let the polynomial P be defined as in (73) and consider again the random variable
F∞ = I2(f∞) defined in (72). Let F be a centered random variable living in a finite sum of Wiener
chaoses, i.e. F ∈

⊕M
i=1Hi. Moreover, assume that

(i) κr(F ) = κr(F∞), for all 2 ≤ r ≤ k + 1 = deg(P ), and

(ii)

IE

(
k+1∑
r=1

P (r)(0)

r! 2r−1

(
Γr−1(F )− IE(Γr−1(F ))

))2

= 0.

Then, F
law
= F∞, and F ∈ H2.

Proof. Let φ be a smooth function. Using the integration by parts formula (Lemma ??), Assumption
(ii) in the statement and Proposition 13, we obtain

IE
(
Fφ(F )

)
=

k−1∑
r=0

κr+1(F )

r!
IE(φ(r)(F )) + IE(φ(k)(F )Γk(F ))

=

k−1∑
r=0

κr+1(F )

r!
IE(φ(r)(F )) +

κk+1(F )

k!
IE(φ(k)(F ))

+

k∑
r=1

2k−r+1κr(F )

(r − 1)!r!
P (r)(0)IE(φ(k)(F ))

−
k∑
r=1

2k−r+1

r!
P (r)(0)IE(φ(k)(F )Γr−1(F ))

(79)

On the other hand, using (69) we obtain that

IE(φ(k)(F )Γr−1(F )) = IE(Fφ(k−(r−1))(F ))

−
r−1∑
s=1

IE(φ(k−s)(F ))IE(Γr−1−s(F )).
(80)

Using the relation IE(Γr−1−s(F )) = κr−s(F )/(r − s− 1)!, and therefore deduce that, for every smooth
test function φ

IE
(
Fφ(F )

)
=

k−1∑
r=0

κr+1(F )

r!
IE(φ(r)(F )) +

κk+1(F )

k!
IE(φ(k)(F ))

+
k∑
r=1

2k−r+1κr(F )

(r − 1)!r!
P (r)(0)IE(φ(k)(F ))

−
k∑
r=1

2k−r+1

r!
P (r)(0)IE[Fφ(k−(r−1))(F )]

+

k∑
r=1

2k−r+1

r!
P (r)(0)

r−1∑
s=1

IE[φ(k−s)(F )]
κr−s(F )

(r − s− 1)!
.

Considering the test function φ(x) = xn with n > k, we infer that IE(Fn+1) can be expressed in a
recursive way in terms of the quantities

IE(Fn), IE(Fn−1), · · · , IE(Fn−k), κ2(F ), · · · , κk+1(F )

and P (1)(0), · · · , P (k)(0). Using Assumption (i) in the statement together with last assertion in Lemma
9, we see that the moments of the random variable F∞ also satisfy the same recursive relation. These
facts immediately imply that

IE (Fn) = IE (Fn∞) , n ≥ 1,
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and the claim follows at once from Point 3 in Proposition 14. To prove that, in fact, F ∈ H2, we are
going to use the two following remarkable results:

(i) Let F ∈ Hp for some p ≥ 2. Then, there exist two constants a and b and also x0 ∈ IR+ such that

exp{−bx2/p} ≤ IP(|F | > x) ≤ exp{−ax2/p} ∀x ≥ x0.

(ii) Let {Fn}n≥1 be a sequence of elements in the second Wiener chaos so that Fn converges in

distribution toward F∞. Then F∞
law
= I1(f1,∞) + I2(f2,∞), and moreover I1(f1,∞) and I1(f2,∞)

are independent.

Coming back to our proof, now we assume that M is the smallest natural number such that F ∈
⊕M

i=1Hi.
Hence F /∈

⊕M−1
i=1 Hi. Therefore, by applying the fact (i) to F , F∞ and the fact that F

law
= F∞, we

deduce that M = 2. Let assume that F = I1(g)+I2(h) for some g ∈ L2(µ) and h ∈ L2(µ2). Considering

the trivial sequence {Fn}n≥1 such that Fn = F∞, n ≥ 1, using the fact that F
law
= F∞ and applying

the fact (ii) above, we deduce that I1(g) is independent of I2(h). Let {λf∞,k}k≥1 and {λh,k}k≥1 denote
the eigenvalues corresponding to the Hilbert-Schmidt operator Af∞ and Ah associated with the kernels
f∞ and h respectively (see Section 5.2). Exploiting the independence of I1(g) and I2(h) and Point 2 in
Proposition 14, we infer that ∑

k∈IN

λ3p
f∞,k

=
∑
k∈IN

λ3p
h,k ∀ p ≥ 1.

As a result, for some permutation π on N we have λ∞,k = λh,π(k) for k ≥ 1, which in turn implies∑
k∈IN

λ2
f∞,k =

∑
k∈IN

λ2
h,k. (81)

On the other hand, from F = I1(g) + I2(h)
law
= F∞, and computing the second cumulant of both sides,

one can easily deduce that if κ2(I1(g)) = IE(I1(g))2 = ‖g‖2 6= 0, then the equality (81) cannot hold. It
follows that I1(g) = 0, and therefore F ∈ H2.

The next theorem is the main finding of this section. Recall that the random variable F∞ has been
defined in formula (72).

Theorem 16. Let {Fn}n≥1 be a sequence of random variables such that each Fn lives in a finite sum
of chaoses, i.e. Fn ∈

⊕M
i=1Hi for n ≥ 1 and some M ≥ 2 (not depending on n). Consider the following

three asymptotic relations, as n→∞:

(i) Fn converges in distribution toward F∞.

(ii) The following relations 1.-2. are in order:

1. κr(Fn)→ κr(F∞), for all 2 ≤ r ≤ k + 1 = deg(P ), and

2. IE
(∑k+1

r=1
P (r)(0)
r!2r−1

(
Γr−1(Fn)− IE(Γr−1(Fn))

))2
−→ 0.

Then, one has the implications (ii) → (i).

We will now illustrate the our main findings (Theorem 16) of this section by considering the case of
a target random variable of the type F∞ = I2(f∞), where the Hilbert-Schmidt operator Af∞ associated
the kernel f∞ has only two non-zero eigenvalues α1 = −α2 = 1/2, thus implying that

F∞ =
1

2

(
N2

1 − 1
)
− 1

2

(
N2

2 − 1
) law

= N1 ×N2 (82)

where N1 and N2 are independent N (0, 1). Note that the associated Polynomial P to such target
distribution is given by P (x) = x(x− 1/2)(x+ 1/2). Hence, P ′(0) = −1/4, P ′′(0) = 0 and P ′′′(0) = 3!.
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Corollary 9. Let {Fn}n≥1 be a sequence of random variables such that each Fn lives in a finite sum
of chaoses, i.e. Fn ∈

⊕M
i=1Hi for n ≥ 1 and some M ≥ 2 (not depending on n). Assume that the

following asymptotic relations are in order:

1. κr(Fn)→ κr(F∞), r = 2, 3 = deg(P ), and

2. IE
(

Γ2(Fn)− IE(Γ2(Fn))− Fn
)2
−→ 0.

Then Fn converges in distribution toward the target random variable N1 ×N2.

Lemma 10. Let F ∈ D∞, and IE(F ) = 0. Then for every s ≥ 1,

κs+2(F ) = 1/2× (s+ 1)!IE
(
F 2
(
Γs−1(F )− IEΓs−1(F )

))
.

In particular,

κ4(F ) =
3!

2
IE
(
F 2
(
Γ1(F )− IE(Γ1(F )

))
,

κ6(F ) =
5!

2
IE
(
F 2
(
Γ3(F )− IE(Γ3(F )

))
=

5!

3!

{
IE
(
F 3
(
Γ2(F )− IE(Γ2(F )

))
− κ2(F )κ4(F )

}
.

Proof. Using twice Malliavin integration by part formula, we obtain

IE
(
F 2Γs−1(F )

)
= IE(F 2)IE(Γs−1(F )) + 2IE(FΓs(F ))

= IE(F 2)IE(Γs−1(F )) + 2IE(Γs+1(F )).

Hence

IE
(
F 2
(
Γs−1(F )− IEΓs−1(F )

))
= 2IE(Γs+1F ) =

2

(s+ 1)!
κs+2(F ).

The second equality for κ6 comes from a direct application of Malliavin integration by part formula.

Remark 18. (Γ2-conjecture revisited). Assume that we have a sequence {Fn}n≥1 of multiple
integrals of a fixed order p ≥ 2, and we aim to characterize convergence in distribution of Fn toward
the target distribution F∞ := N1 ×N2 in terms of convergences of finitely many cumulants. According
to Corollary 9 it is enough to have the following convergences: (i) κr(Fn)→ κr(F∞) for r = 2, 3, and
(ii) Var(Γ2(Fn))− 2IE

(
Fn(Γ2(Fn)− IEΓ2(Fn))

)
+ κ2(Fn)→ 0. Using Lemma 10 the convergence in (ii)

can be rewritten as
Var(Γ2(Fn))− 1/3κ4(Fn) + κ2(Fn)→ 0.

Now, assume that we have

degQ=6∑
r=2

Q(r)(0)

r!

κr(Fn)

2r−1(r − 1)!
= 1/25

{κ6(Fn)

5!
− κ4(Fn)

3
+ κ2(Fn)

}

−→
degQ=6∑
r=2

Q(r)(0)

r!

κr(F∞)

2r−1(r − 1)!
= 0

(83)

Combining these observation, one just left to show that for any multiple integral F , we have the
estimate Var(Γ2(F )) ≤ 1/5!κ6(F ).
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