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The aim of this mini-course is to provide an introduction to the combination
of two probabilistic techniques. First the Stein’s method (1972). This is
a collection of probabilistic techniques which allow to compare probabil-
ity distributions by means of the properties of differential operators (for
more information, see [4]). Second the Malliavin calculus (1973). It’s an
infinite dimensional differential calculus (for a detailed text, see the book
[7]). Interestingly, the aforementioned techniques can be sweetly combined
in order to provide CLTs for non-linear functionals of an infinite dimen-
sional isonormal Gaussian process. As a substantial result, we will proof
an astonishing discovery (this is of one the main objectives of the course)
by Nualart-Peccati (2005)1 known nowadays as the fourth moment theorem,
stating that, for a sequence Fn of random variables living in a fixed Wiener
chaos such that IE(F 2

n) → 1, the sequence Fn converges in distribution to-
wards a standard Gaussian distribution if and only if IE(F 4

n)→ 3(= IE(N4),
where N ∼ N (0, 1)). This new and efficient methodology, i.e. combining
the Malliavin calculus together with the Stein’s method, in literatures, is
called the Malliavin-Stein approach. For an exposition of this fertile line of
research, one can consult the following constantly updated webpage:

https://sites.google.com/site/malliavinstein/home

for many applications of Malliavin-Stein approach, as well as for asymp-
totic results that are somehow connected with the fourth moment theorem.
Moreover, the monograph [5] provides a quite detailed introduction to the
topics that will be discussed in the course.
The plan of the course is the following. Lecture 1 : Stein’s method, Gaussian
measure, stochastic integration and chaotic decompositions, Malliavin calcu-
lus. Lecture 2 : combination of the Stein’s method with the Malliavin calculus
and CLTs on the Wiener chaos. Lecture 3 : applications, new directions
(powerful Markov triplet approach [1, 2]) and generalizations (non-Gaussian
target distributions [6, 3]) as well as some important open problems if time
permits.

1 Nualart, D., Peccati, G. (2005) Central limit theorems for sequences of multiple
stochastic integrals. Ann. Probab. Volume 33, Number 1, 177-193.
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Part I

Gaussian approximation

1 Introduction

Typical example. Take W = {Wt, t ≥ 0} a standard BM started from
zero. This means that W is a centered Gaussian process such that W0 = 0,
W has continuous paths, and IE(WsWt) = s ∧ t for every t, s ≥ 0. A result
by Julin (1979) says: ∫ 1

0

W 2
t

t2
dt =∞ a.s. (1)

(Note that this is a property at around 0). Also, notice that for all ε > 0 we
have

Bε =

∫ t

ε

W 2
t

t2
dt <∞

Remark 1. Define a new process Ŵ by Ŵ0 = 0 and Ŵu = uW1/u for u > 0.

It can be easily shown that Ŵ is a standard Brownian motion, and using the
change of variable u = 1/t, it now follows that the property (1) is equivalent
to the following statement:∫ ∞

1

W 2
t

t2
dt =∞ a.s.

By direct computations, one can show that (check it!)

IE(Bε) = − log ε, VarBε ≈
√
−4 log ε, as ε→ 0.

By setting

B̃ε =
Bε + log ε√
−4 log ε

, ε ∈ (0, 1)

one can ask the following natural question:

Problem 1. Prove that, as ε→ 0, we have B̃ε
law→ N (0, 1).

Later on, we will present two different solutions to the above problem.
One, using the classical method of moments/cumulant, and second, using
the techniques introduced in this course. It will turn out that using the
second approach, we are not only able to give a fruitful solution to the above
problem but also we can provide the following quantitative bound: there
exist constants C1 and C2 such that

C1(
√
− log ε)−1 ≤ dKol(B̃ε,N (0, 1)) ≤ C2(

√
− log ε)−1.
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2 Elements of Stein’s method

The typical route is the following (a) Stein’s lemma, then (b) develop a
heuristic, followed by (c) an equation whose solutions (and properties thereof)
will lead to bounds.

2.1 Moments/Cumulants

During the lectures, the notion of cumulant is sometimes used. Recall that,
given a random variable Y with finite moments of all orders, i.e. IE|Y |r <∞
for all r ≥ 1, and with characteristic function ϕY (t) := IE(eitY ), t ∈ IR, one
define the sequence of cumulants of Y , noted as {κr(Y ) : r ≥ 1}, as

κr(Y ) = (−i)r d
r

dtr
logϕY (t)

∣∣∣
t=0

, r ≥ 1.

For instance,

κ1(Y ) = IE(Y )

κ2(Y ) = Var(Y )

κ3(Y ) = IE(Y 3)− 3IE(Y 2)IE(Y ) + 2IE(Y )3

κ4(Y ) = IE(Y 4)− 4IE(Y )IE(Y 3)− 3IE(Y 2)2 + 12IE(Y )2IE(Y 2)− 6IE(Y )4.

In particular, if IE(Y ) = 0, then κ3(Y ) = IE(Y 3) and κ4(Y ) = IE(Y 4) −
3IE(Y 2)2. Recall that for a standard Gaussian random variable N ∼ N (0, 1),
we have logϕN (t) = −t2/2, and therefore κ1(N) = IE(N) = 0, κ2(N) =
Var(N) = 1, and κr(N) = 0 for all r ≥ 3.

Remark 2. The following relation shows that moments can be recursively
defined in terms of cumulants (and vice-versa): fix r = 1, 2, · · · and assume
that IE|Y |r+1 <∞, then

IE(Y r+1) =
r∑
s=0

(
s

r

)
κs+1(Y )IE(Y r−s). (2)

The reader is referred to [8, Chapter 3] for a proof of relation (2), as well
as, for a self-contained presentation of more properties of cumulants and for
several combinatorial characterizations.
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Exercise 1. Let N ∼ N (0, 1). (a) Show that the moments sequence
{mr(N) := IE(N r) : r ≥ 1} of N satisfies in the following recursion formula

mr+1(N) = rmr−1(N), r ≥ 1. (3)

(b) Using induction and part (a) to prove that

mr(N) =

{
(2k − 1)!! if r = 2k

0 otherwise.

where the notation double factorial (2k−1)!! = (2k−1)×(2k−3)×· · ·×3×1.

The following lemma is a fundamental key to provide CLTs using the
method of moments/cumulants.

Lemma 1. The law of the random variable N ∼ N (0, 1) is determined by its
moments/cumulants, i.e if X be a random variable such that IE(Xr) = IE(N r)

[or equivalently κr(X) = κr(N)] for all r ≥ 1, then X
law
= N .

Proof. Let law(N) = γ and law(X) = ν. Then, it is enough to show that
their Fourier transforms are the same:

∫
IR e

itxγ(dx) =
∫
IR e

itxν(dx), for every
t ∈ IR. Since mr(N) = mr(X) for all r ≥ 1, using Taylor’s formula, triangle
inequality, the following elementary inequality∣∣∣eitx − r∑

k=0

(itx)k

k!

∣∣∣ ≤ |tx|r+1

(r + 1)!

and Cauchy-Schwarz inequality to write

∣∣∣ ∫
IR
eitxγ(dx)−

∫
IR
eitxν(dx)

∣∣∣ ≤ ∫
IR

∣∣∣eitx − r∑
k=0

(itx)k

k!

∣∣∣γ(dx)

+

∫
IR

∣∣∣eitx − r∑
k=0

(itx)k

k!

∣∣∣ν(dx)

≤
(∫

IR

|tx|2r+2

(r + 1)!2
γ(dx)

) 1
2

+
(∫

IR

|tx|2r+2

(r + 1)!2
ν(dx)

) 1
2

= 2

√
|t|2r+2m2r+2(N)

(r + 1)!2
,
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for every r ≥ 1. Now, using Stirling formula r! ∼
√

2πr( re)
r as r →∞, and

Lemma 2.1, one can infer that

lim
r→∞

|t|2r+2m2r+2(N)

(r + 1)!2
= 0.

b) The following lemma known as Stein’s lemma provides a useful character-
ization of one-dimensional standard Gaussian distributions.

Lemma 2. (Stein’s lemma) For a real-valued random variable Y we have
Y ∼ N (0, 1) if, and only if for every f : IR→ IR such that E|f ′(N)| <∞,
we have

IE(f ′(Y )− Y f(Y )) = 0. (4)

Proof. The sufficient condition is trivial. For the other way, note that for all
polynomials the relation (4) works. But this means that

IE(Y r+1) = rIE(Y r−1).

Now, use Exercise 2.1 and Lemma 1. Another way is to take f complex
exponential and therefore determine the characteristic function of Y (do
it!).

Theorem 1. (The method of moments/cumulants) Let F be a real-
valued random variable whose law is determined by its moments/cumulants.
Assume that {Fn}n≥1 be a sequence of random variables in which each Fn
has all moments/cumulants such that IE(F rn) → IE(F r), for every r ≥ 1.
Then Fn converges in distribution towards F .

b) Heuristic. Suppose that for “many” functions f we have

IE(f ′(Y )− Y f(Y )) ≈ 0.

Can we conclude that Y is close – in some sense – to N? This is, a priori,
not clear since there are many ways to characterize N and not all lead to a
nice theory of probabilistic approximation. We will consider a very strong
measure of closeness in terms of the total variation (TV) distance.
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2.2 Distances between probability measures

(i) The Kolmogorov distance: Let F and G be two IRd, (d ≥ 1) valued
random variables. Let

HKol = {h : IRd → IR : h(x1, · · · , xd) = Πd
k=11(−∞,zk](xk), for some z1, · · · , zd ∈ IR}.

The Kolmogorov distance between the laws of random variables F and G,
noted as dKol(F,G), define as

dKol(F,G) = sup
h∈HKol

∣∣∣IE(h(F ))− IE(h(G))
∣∣∣

= sup
z1,··· ,zd∈IR

∣∣∣IP(F ∈ (−∞, z1]× · · · × (−∞, zd])

− IP(G ∈ (−∞, z1]× · · · × (−∞, zd])
∣∣∣.

In particular (d = 1): dKol(F,G) = supz∈IR

∣∣∣IP(F ≤ z) − IP(G ≤ z)
∣∣∣. Note

that always dKol(F,G) ≤ dTV(F,G).
(ii) The total variation distance:

HTV = {h : IRd → IR : h = 1B for someB ∈ B(IRd)}.

dTV(F,G) = sup
h∈HTV

∣∣∣IE(h(F ))− IE(h(G))
∣∣∣

= sup
B∈B(IRd)

∣∣∣IP(F ∈ B)− IP(G ∈ B)
∣∣∣.

(iii) The Wasserstein distance:

HW = {h : IRd → IR : ‖h‖lip ≤ 1}, ‖h‖lip := sup
x 6=y∈IRd

|h(x)− h(y)|
‖x− y‖IRd

.

dW(F,G) = sup
h∈HW

∣∣∣IE(h(F ))− IE(h(G))
∣∣∣.

Exercise 2. Let d ≥ 1. Show that the topologies induced by three distance
dKol, dTV and dW on the set of probability measures on IRd are strictly
stronger than the topology of the convergence in distribution, i.e.

dKol,TV,W(Fn, F )→ 0 =⇒ Fn
law→ F.
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Remark 3. The Fortet–Mourier distance (or bounded Wasserstein distance:

dFM(F,G) = suph∈HFM

∣∣∣IE(h(F )) − IE(h(G))
∣∣∣, where HFM = {h : IRd →

IR : ‖h‖∞ + ‖h‖lip ≤ 1}. The dFM distance metrizes the convergence in
distribution, i.e.

dFM(Fn, F )→ 0 ⇐⇒ Fn
law→ F.

c) Stein’s equation for normal approximation. Let N ∼ N (0, 1).
Consider a function h : IR→ [0, 1] so that IE|h(N)| <∞. The Stein equation
associated to the test function h is

f ′(x)− xf(x) = h(x)− IEh(N) (5)

which is taken to hold at all x ∈ IR. A solution is a function fh whose
derivative is a.e. defined and for which there exists a version which satisfies
(5). In particular we always speak of f ′ in the weak sense. For a moment,
assume that fh is a solution of (5). Then, by taking expectation of both
sides (5) (together with plugging in x = Y , where Y is a real-valued random
variable):

IEh(Y )− IEh(N) = IE(f ′(Y )− Y f(Y )).

Therefore, for any integrable random variable Y :

sup
h∈HTV

∣∣∣IEh(Y )− IEh(N)
∣∣∣ = sup

fh,h∈HTV

∣∣∣IE(f ′h(Y )− Y fh(Y ))
∣∣∣. (6)

Note that the expression in the right hand side in above does not
involved the target random variable N at all!

Proposition 1. For every c ∈ IR, set

fc,h(x) = cex
2/2 + ex

2/2

∫ x

−∞
(h(u)− IEh(N))e−u

2/2du;

Then, fc,h is a solution of the Stein’s equation. Moreover, the unique solution

satisfying in limn→∞ e
−x

2

2 f(x) = 0 is given by fh = f0,h, i.e. c = 0.

Proof. Note that, the Stein’s equation can be written as

e
x2

2
d

dx

(
e−

x2

2 f(x)
)

= h(x)− IEh(N).
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Now, take integral of both sides. For the second part, using dominated
convergence theorem (DCT) we have

lim
|x|→∞

∫ x

−∞
(h(u)− IEh(N))e−u

2/2du = 0.

Recall that IE|h(N)| <∞.

The gist of the method is that it will transform the study of a non-smooth
object (the TV distance) in terms of smooth objects (the solutions f0,h).
This happens through the following lemma.

Lemma 3. Let h : IR→ [0, 1]. Then the solution fh of the Stein’s equation
associated to h satisfying in

‖fh‖∞ ≤
√
π/2 and ‖f ′h‖∞ ≤ 2

(the Stein’s magic factors).

Note that these bounds are uniform over the whole family h. An immediate
consequence of Lemma 3 is the following.

Corollary 1. Let Y be a real-valued random variable such that IE|Y | <∞.
Then

dTV(Y,N) ≤ sup
f∈FTV

∣∣∣IE(f ′(Y ))− IE(Y f(Y ))
∣∣∣,

where FTV = {f : ‖f‖∞ ≤
√
π/2 and ‖f ′‖∞ ≤ 2}.

Let to stress that we have explicitly transformed the non-smooth problem,
the lhs of (6), into a smooth one, the rhs of (6). Moreover, the bounds in
Lemma 3 are independent of the target Gaussian random variable N , and
just depends on (a functional of) a nice Y ! Once we have this, is it true
that the rhs is easier to evaluate than the lhs? This is Stein’s intuition and
it turns out to be true in many different and complicated cases. There are
several techniques for working out this quantity : exchangeable pairs (Stein,
1972); dependency graphs; zero-bias transforms (Goldstein - Reinert 1995).
Here we are going to develop tools to evaluate the Stein bound when Y is a
(sufficiently regular) functional of a infinite-dimensional Gaussian field (e.g.
the Brownian motion, the fractional Brownian motion,...). The answer for
this is through Malliavin calculus.
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Proof. (of Lemma 3) First remark that |h(u)− IEh(N)| ≤ 1. Then we easily
get (with Φ the Gaussian CDF)

|fh(x)| ≤ ex2/2 min{Φ(x), 1− Φ(x)}

= ex
2/2

∫ ∞
|x|

e−y
2/2dy := S(x).

A direct computation shows that S attains its maximum at x = 0, and also
S(0) =

√
π/2. Hence, |fh| ≤ S(0) =

√
π/2, and the first claim follows.

For the second bound, we can simply write out f ′h, to get

|f ′h(x)| =
∣∣∣h(x)− IEh(N) + xex

2/2

∫ x

−∞
(h(u)− IEh(N))e−u

2/2du
∣∣∣

≤ 1 + |x|ex2/2
∫ ∞
|x|

e−y
2/2dy = 2.

Exercise 3. Stein’s bound for the Kolmogorov distance (a) For every
z ∈ IR, write fz = f1(−∞,z] , that is, fz is the solution of the Stein’s equation
associated to the indicator function h = 1(−∞,z]. Also, Φ stands for the
cumulative distribution function of a N (0, 1) random variable. Show that

fz(x) =


√

2πe
x2

2 Φ(x)[1− Φ(z)] if x ≤ z,
√

2πe
x2

2 Φ(z)[1− Φ(x)] if x ≥ z.

(b) Prove that, for every x ∈ IR, fz(x) = f−z(−x) (this implies that, in
the estimates below, one can assume that z ≥ 0 without loss of generality).
(c) Compute the derivative d

dx [xfz(x)], and deduce that the mapping x 7→
xfz(x) is increasing.
(d) Show that limx→−∞ xfz(x) = Φ(z)− 1 and also that limx→+∞ xfz(x) =
Φ(z).
(e) Use part (a) to prove that

f ′z(x) =

[
√

2πxe
x2

2 Φ(x) + 1][1− Φ(z)] if x < z,

[
√

2πxe
x2

2 (1− Φ(x))− 1]Φ(z) if x > z.

(f) Use part (e) in order to prove that

0 < f ′z(x) ≤ zfz(x) + 1− Φ(z) < 1, ifx < z,
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and

−1 < zfz(x)− Φ(z) ≤ f ′z(x) < 0, ifx > z

to deduce that ‖f ′z‖∞ ≤ 1.
(g) Use part (f) to show that x 7→ fz(x) attains its maximum in x = z.

Compute fz(z) and prove that fz(z) ≤
√
2π
4 for every z ∈ IR, to complete a

proof of the following theorem.

Theorem 2. Let z ∈ IR. Then the function fz is such that ‖fz‖∞ ≤
√
2π
4

and ‖f ′z‖∞ ≤ 1. Therefore, for N ∼ N (0, 1), and for any integrable random
variable F ,

dKol(F,N) ≤ sup
f∈FKol

|IE[f ′(F )]− IE[Ff(F )]|,

where FKol = {f : ‖f‖∞ ≤
√
2π
4 , ‖f ′‖∞ ≤ 1}.

Part II

Gaussian measures and chaos

Take (Ω,F , IP) an underlying probability space.

2.3 Definition and first properties

We first define Gaussian measures.

Definition 1. Take (A,A, µ) a measure space (Polish, i.e. metric, separable
and complete) with µ positive, σ-finite and non-atomic measure. A Gaussian
measure over (A,A) with control µ is a centered Gaussian family

G = {G(B); µ(B) <∞}

such that

IE (G(B)G(C)) = µ(B ∩ C), µ(B) <∞ andµ(C) <∞.
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A couple of remarks : (i) If A = IR+ and µ is the Lebesgue measure
then Wt = G[0, t] is, up to continuity, a Brownian motion (because then
IEWtWs = min(t, s)); (ii) one can prove that if {Bi}i≥1 is a sequence of
disjoint sets such that µ(

⋃
iBi) <∞ then

G(
⋃
i

Bi) =
∑
i

G(Bi)

with convergence in L2(Ω).

Proposition 2. G, in fact, exists.

Proof. Take {ei}i≥1 an ONB of L2(µ). Then for all f ∈ L2(µ) we have
f =

∑
〈f, ei〉ei with the L2(µ) scalar product. Next take {ξi}i≥1 a sequence

of i.i.d. N (0, 1) random variables and construct

X(f) =
∑
ige1

ξi〈f, ei〉.

Then {X(f); f ∈ L2(µ)} is a centered Gaussian family such that IE(X(f)X(g)) =
〈f, g〉 (easy exercise through Parseval’s identity, check it!). We are then ready
to conclude, since

G(B) = X(1B), µ(B) <∞

is a Gaussian measure with control measure µ.

A final remark is that GM are not probability measures! More precisely:

Proposition 3. The mapping

B 7→ G(B)(ω)

is not a signed measure for a fixed ω.

Proof. Take a Borel set B with µ(B) <∞. Since µ is non-atomic, we observe
that ∫

A

∫
A

1B×B(x, y)1x=yµ(dx)µ(dy) = Diagµ(B) = 0.

But, on the other hand side, one can easily show that∫
A

∫
A

1B×B(x, y)1x=yG(dx)G(dy) := DiagG(B) = µ(B).
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(Note that the integration wrt G is shaky but will be proven rigorously later
on). Indeed here a standard way to construct DiagG(B) is through

lim
n→∞

kn∑
i=1

G(B
(n)
i )G(B

(n)
i ) = lim

n

∑
G(B

(n)
i )2

where {B(n)
i , i = 1, . . . , kn} is a sequence of partitions of B such that

supµ(B
(n)
i )→ 0, and one can show that (check it!), for any partition,

IE
(∑

G(B
(n)
i )2 − µ(B)

)2 → 0.

In other words G charges, in a nontrivial way, the diagonal and hence
cannot be a signed measure.

Remark 4. In the case, when A = IR+, µ is the Lebesgue measure, the
statement B 7→ G(B)(ω) is a singed measure on a set of positive probability
will imply that the mapping t 7→ Wt := G[0, t] is of bounded variation on
a set of positive probability in which is a contradiction with the following
well-known fact that ∑

0≤ti≤t
(W

t
(n)
i

−W
t
(n)
i−1

)2 → t.

2.4 Single integrals

We want for any f ∈ L2(µ) to define an object of the type

I1(f) :=

∫
A
f(x)G(dx)

To this end, we introduce a collection of ”simple integrands”

E(µ) = {f(x) =

N∑
j=1

cj1Bj , µ(Bj) <∞}

which has the density property Ē(µ) = L2(µ). Then we can define, for any
simple integrand f

I1(f) :=
N∑
j=1

cjG(Bj).
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With this in hand it is easy to show that, for all simple f, g we have

IE(I1(f)I1(g)) = 〈f, g〉L2(µ), IEI1(f) = 0.

Now, it is straightforward to extend to all functions f ∈ L2(µ). Let f ∈
L2(µ), then there exists a sequence of simple functions {fn}n≥1 such that
‖fn − f‖ → 0 and {I1(fn)} is Cauchy in L2(IP). One therefore sets

I1(f) = lim I1(fn)

the limit being taken in L2(IP) and being independent of the choice of the
sequence.

Remark 5. For all f, g ∈ L2(µ) we have

IEI1(f) = 0 and IE (I1(f)I1(g)) = 〈f, g〉L2(µ).

Definition 2 (Wiener, 1938). The space H1 = {I1(f) : f ∈ L2(µ)} is the
first Wiener chaos of G. Note that, since everything is obtained through
centered Gaussian random variables, so H1 is a centered Gaussian family.
It therefore cannot be suffice to describe all square integrable functionals
measurable wrt G.

2.5 Multiple integrals

Let p ≥ 2. Consider L2(µp) the space of square integrable functions of p
arguments on the space (Ap,Ap, µp). We then define the simple functions

E(µp) = Simple integrands

=

f =

n∑
i1,··· ,ip=1

ai1···ip1Bi1 ⊗ · · · ⊗ 1Bip : Bik ∩Bil = ∅ ∀ k 6= l and µ(Bij ) <∞

 ,

and more importantly the coefficients ai1···ip = 0 if any of two indices
i1, · · · , ip are equal, i.e. ∃ k 6= l such that ik = il.

For any f ∈ E(µp) then we define the multiple Wiener-Itô integral of
order p of f ∈ E(µp) w.r.t. G through

Ip(f) =

n∑
i1,··· ,ip=1

ai1···ipG(B1) . . . G(Bd). (7)

Now, the main properties are gathered in the following exercise.
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Exercise 4. (a) Show that for f ∈ E(µp), the definition of Ip(f) does not
depend on a particular representation of f .
(b) Ip : E(µp)→ L2(Ω, IP) is a linear map.
(c) Ip(f) = Ip(f̃), where f̃ is the symmetrization of f , i.e.

f̃(x1, · · · , xp) = 1/p!
∑
σ

f(xσ(1), · · · , xσ(p))

where the sum runs over all permutations σ of {1, · · · , p}.

(d) For all f ∈ E(µp) and g ∈ E(µq) we have

IE(Ip(f)) = 0 (centered)

and

IE(Ip(f)Iq(g)) =

{
0 if p 6= q,

p!〈f̃ , g̃〉L2(µp)

(orthogonality / isometry)

(e) Esym(µp)
‖ ‖L2(µp) = L2

sym(µp), where here ”sym” stands for symmetrized
functions. Hence, deduce that the mapping Ip can be continuously extended
to L2

sym(µp).

Now let f ∈ L2
sym(µp); then there exists a sequence {fn} ⊂ Esym(µp) such

that fn → f in L2(µp). Therefore, we define

Ip(f) := lim
n→∞

Ip(fn) (8)

the limit being taken in L2(IP) and being independent of the chosen sequence.

Definition 3. The Wiener chaos of order p associated with G, denoted by
Hp, is defined as

Hp := v.s.
{
Ip(f) ; f ∈ L2

sym(µp)
}
.

Moreover, the three properties (centered, isometry and orthogonality)
extend to the whole class Hp. Note that we write I0(c) = c; c ∈ IR

Remark 6. If A = [0, T ], µ is Lebesgue and Wt = G([0, t]) is a Brownian
motion, then for symmetric f ∈ L2([0, T ]p)

Ip(f) = p!

∫ T

0
dWt1

∫ t1

0
dWt2 . . .

∫ tp−1

0
dWtpf(t1, . . . , tp).
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The random variables in Definition are fundamental: they allow for
example to write any G-square integrable random variable as an infinite
series (this will be treated later on). The following remark provides some
crucial properties of random variables living in a Wiener chaos.

Remark 7. (a) Shigekawa 2 proves that if F =
∑M

p=0 Ip(fp) then the law
of F has a density w.r.t. the Lebesgue measure.
(b) (Nelson, 1968) Hp is hypercontractive, i.e. ∀q > 0 there exists Cp,q > 0
such that for all F ∈ Hp we have

IE(|F |q)1/q ≤ Cp,q IE(F 2)1/2. (9)

In particular all these Lp topologies are equivalent on the Wiener chaoses.

2.6 Multiplication formulae & Chaotic expansion

The problem. What is Ip(f)× Iq(g)?

Definition 4 (Contraction). For f ∈ L2
sym(µp) and g ∈ L2

sym(µq) for p, q ≥ 1
we define for all r = 0, . . . ,min(p, q)

f ⊗ g(x1, x2, . . . , , xp+q−2r)

=

∫
Ar
f(ar, x1, . . . , xp−r)g(ar, xp−r+1, . . . , xp+q−2r)µ(da1, · · · , dar).

Here ar = (a1, · · · , ar).

Example 1. If p = q = r then f ⊗p g = 〈f, g〉L2(µp).

Example 2. If r = 0 then

f ⊗0 g(x1, . . . , xp+q) = f ⊗ g = f(x1, . . . , xp)g(xp+1, . . . , xp+q).

Example 3. If p = q = 2 and r = 1 then

f ⊗1 g(x, y) =

∫
A
µ(da)f(a, x)g(a, y).

2Shigekawa, I. Derivatives of Wiener functionals and absolute continuity of induced
measures. J. Math. Kyoto Univ. 20 (1980), no. 2, 263-289.

15



Remark 8.

‖f ⊗r g‖2L2(µp+q−2r) ≤ ‖f‖
2
L2(µp)‖g‖

2
L2(µq) <∞.

Note that if p = q = r this is just the CS inequality.

Remark 9. In general f⊗r q is not symmetric, so we define the symmetriza-
tion

f̃ ⊗r g(x1, . . . , xp+q−2r) =
∑

σ∈Sp+q−2r

f ⊗r g(xσ(1), . . . , xσ(p+q−2r))

(p+ q − 2r)!
.

Note that, in general,
‖f̃‖L2(µp) ≤ ‖f‖L2(µp),

i.e. symmetrization shrinks.

We are now ready to state a fundamental result.

Theorem 3 (Multiplication formulae). Take f ∈ L2
sym(µp) and g ∈ L2

sym(µq).
Then

Ip(f)× Iq(g) =

min(p,q)∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r

(
f̃ ⊗r g

)
.

We will proceed to a heuristic proof of this result. For a detailed proof
consult [7].

Proof. First note how we have, at each step, been very careful to avoid the
diagonals. Hence by our construction Ip(f) can be seen as

Ip(f) =

∫
A
. . .

∫
A
f(x1, . . . , xp)1{xi 6=xj ,i 6=j}G(dx1) . . . G(dxp).

Then we have (as through Fubini)

Ip(f)Iq(g)

=

∫
Ap+q

f(x1, . . . , xp)︸ ︷︷ ︸
no diag

g(y1, . . . , yq)︸ ︷︷ ︸
no diag

G(dx1) . . . G(dxp)G(dy1) . . . G(dyp).

While there are no diagonals in the first and second blocks, there are all
possible mixed diagonals in the joint writing. Hence we need to take into
account all these diagonals (whence the combinatorial coefficients in the
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statement, which count all possible diagonal sets of size r) and then “integrate
out”, in other words we get

Ip(f)Iq(g)

=

min(p,q)∑
r=0

r!

(
p

r

)(
q

r

)∫
Ap−r

∫
Aq−r

ζG(dx1) . . . G(dxp−r)G(dy1) . . . G(dyq−r),

with

ζ =

(∫
Ar
f(ar, x1, . . . , xp−r)g(ar, xp−r+1, . . . , xp+q−2r)µ

r(dar)

)
.

Since DiagG(da) = µ(da), we get the proof.

2.7 Hermite polynomials and chaos

Definition 5. We define the Hermite polynomials as the family of polyno-
mials {Hn;n ≥ 0} such that H0 ≡ 1 and, for all n ≥ 1,

Hn(x) = (−1)nex
2/2dnx(e−x

2/2).

The following exercise gather the important properties of the Hermite
polynomials.

Exercise 5. Define the divergence operator δ on the space Dom(δ) ⊂
L2(IR, γ) as δϕ(x) := −ϕ′(x) + xϕ = −e

x2

2
d
dx(e−

x2

2 ϕ(x)). Let p ≥ 0 be an
integer. We define the pth Hermite Polynomial as H0 = 1 and Hp = δp1,
where here δp = δ ◦ · · · ◦ δ, p times.
(a) Show that dδ − δd = Identity, where d = d

dx , and moreover δHp =
Hp+1, dHp = pHp−1 and (δ + d)Hp = xHp.
(b) for any p, q ≥ 0 show that∫

R
Hp(x)Hq(x)γ(dx) = δp,qp!,

where here δp,q stands for the Kronecker delta.
(c) Show that the family { 1√

p!
Hp : p ≥ 0} is an orthonormal basis of

L2(IR, γ).
(d) Define the Ornstein-Uhlenbeck generator Lϕ(x) = −xϕ′(x)+ϕ′′(x).
Show that LHp = −pHp.
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In other words the multiple integrals are infinite dimensional versions of
the Hermite polynomials.

Proposition 4. For all h ∈ L2(µ) such that ‖h‖L2(µ) = 1 we define

h⊗p(x1, . . . , xp) =

p∏
i=1

h(xi) ∈ L2
sym(µp).

Then, for all p ≥ 1, we have

Ip(h
⊗p) = Hp(I1(h)).

This is sometimes called the Wick product of order p of I1(h).

Proof. Trivial for p = 1. Proceed by induction and choose p ≥ 1. Then note
that

Ip(h
⊗p)I1(h) = Ip+1(h

⊗p+1) + pIp−1(h
⊗p)

Whence, using the recursion,

Ip+1(h
⊗p+1) = Hp(I1(h))I1(h)− pHp−1(I1(h))

Using the previous exercise we also know that

dxHp(x) = pHp−1(x)

and thus

Ip+1(h
⊗p+1) = Hp(I1(h))I1(h)−Hp(I1(h))

= δHp(I1(h))

= Hp+1(I1(h)).

Theorem 4. [Chaotic representation] For all F ∈ L2(σ(G)) there exists a
unique {fq; q ≥ 1} such that fq ∈ L2

sym(µq) and we have

F = IE(F ) +
∞∑
q=1

Iq(fq) (10)

(the equality is in L2(IP)). In particular

IE(F 2) = IE(F )2 +

∞∑
q=1

q!‖fq‖2L2(µq).
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Proof. We start with a few facts.

- Fact 1 : random variables of the type I1(h) with ‖h‖L2(µ) = 1 generate
σ(G).

- Fact 2 : for all λ the function eiλI1(h) can be approximated in L2(IP) by
complex linear combinations (through Taylor) of powers I1(h)m, m ≥ 1.

- Fact 3 : If X ∈ L2(σ(G)) is such that IE(XI1(h)m) = 0 for all h,m, then
IE(XeiλI1(h)) = 0 for all λ, h implies that X = 0 almost surely.

As a consequence

v.s.L
2(σ(G)){I1(h)m ; ‖h‖L2(µ) = 1 and m ≥ 1} = L2(σ(G)).

Hence, all we need to do is to show the theorem for random variables of
the type I1(h)m, i.e. we need to show that every F = I1(h)m admits a
representation (10). But we already now that there exist Cq,m, some real
constants, such that

I1(h)m =
m∑
q=0

Cq,mHq(I1(h)),

=
m∑
q=0

Cq,mIq(h
⊗q).

3 Elements of Malliavin Calculus

We work within the framework of a Gaussian measure G with the control
measure µ having the suitable properties. We associate to all F ∈ L2(σ(G))
an expansion F = IE(F ) +

∑
q≥1 Iq(fq).

3.1 The derivative operator D

We take

dom(D) :=

F ∈ L2(σ(G)) :

∞∑
q=1

qq!‖fq‖2L2(µq) <∞
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For F ∈ dom(D) we define

DtF =

∞∑
q=1

qIq−1(fq(t, •)), t ∈ A

where • indicates that we integrate over the (q − 1) remaining variables. We
can then see that

IE

[∫
A

(DtF )2µ(dt)

]
=

∫
A
µ(dt)E

 ∞∑
q=1

qIq−1(fq(t, •))

2
=

∫
A
µ(dt)

∞∑
q=1

q2(q − 1)‖fq(t, •)‖2

=
∞∑
q=1

qq!‖fq‖2L2(µq) <∞.

First note that for fq = h⊗q with ‖h‖ = 1, then Iq(fq) = Hq(I1(h)) and

DtIq(fq) = qIq−1(fq(t, •)) = qIq−1(h
⊗q−1)h(t) = qHq−1(I1(h))h(t)

= H ′q(I1(h))h(t). (11)

In particular DtI1(h) = h(t). Using this fact together with several
approximation arguments one can prove the following chain rules.

Proposition 5. [Chain rule 1]Let h1, . . . , hd ∈ L2(µ) and take f : IRd →
IR ∈ C1

b . Now define F = f(I1(h1), . . . , I1(hd)). Then F ∈ dom(D), and

DtF =

d∑
j=1

∂xjf(I1(h1), . . . , I1(hd))hj(t).

The requirement that the functions be C1
b (differentiable with bounded

derivatives) is too stringent, and can be replaced by polynomial tail behavior.

Proposition 6. [Chain rule 2] Take F ∈ dom(D) and f : IR → IR ∈ C1
b .

Then
Dtf(F ) = f ′(F )DtF.

Note that nowhere do we suppose that F have a density; we could end
up sometimes with random variables defined a.e. and for which f ′(F ) is only
defined almost everywhere. Assuming that F has a density one can go a step
further.
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Proposition 7. [Chain rule 3] Take F ∈ dom(D) and f : IR → IR Lips-
chitz (in particular absolutely continuous and a.e. differentiable). Suppose
moreover that F has a density (wrt Lebesgue measure). Then

Dtf(F ) = f ′(F )DtF.

Working upwards we can also show the last chain rule, which will in
particular allow us to work with polynomials (and hence compute moments).

Proposition 8. [Chain rule 4] If F =
∑M

j=0 Ij(fj) be a finite sum of multiple
integrals (in particular having density), then

Dtp(F ) = p′(F )DtF

for every polynomial p : IR→ IR.

3.2 Generator of the Ornstein-Uhlenbeck semigroup L

We take

dom(L) :=

F ∈ L2(σ(G)) :
∞∑
q=1

q2q!‖fq‖2L2(µq) <∞

 .

For all F ∈ dom(L) we define

LF = −
∞∑
q=1

qIq(fq).

For every F ∈ L2(σ(G)) we also define

L−1F = −
∞∑
q=1

1

q
Iq(fq).

This is a pseudo-inverse of the operator L, because

LL−1F = F − IE(F ).

Note that L−1(F ) ∈ dom(D) and dom(L) always, because this is just
the chaotic expansion of a r.v. whose kernels are Iq/q which can be safely
multiplied by q and q2.
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Proposition 9. [Malliavin integration by parts] Assume that F,G ∈
L2(σ(G)) with IE(F ) = 0 and G ∈ dom(D). Then

IE(FG) = IE(〈DG,−DL−1F 〉L2(µ)).

Proof. Again by density arguments we just prove it for F = Iq(f) and
G = Ip(g). But then

IE(FG) = δp,qq!〈f, g〉L2(µq)

and
FtG = pIp−1(g(t, •)).

Also we have

L−1F = −1

q
Iq(f) and −DtL

−1F = Iq−1(f(t, •))

so that, taking expectations, we get

IE(〈DG,−DL−1F 〉L2(µ)) =

∫
A
µ(dt)IE[pIp−1(g(t, •))Iq−1(f(t, •))]

= δp,qp

∫
A
µ(dt)(p− 1)!

∫
Ap−1

g(t, x̄p−1)f(t, x̄p−1)dµ
p−1

= δp,qp!〈f, g〉L2(µp).

Corollary 2. Assume that IE(F ) = 0 for F ∈ dom(D). Also assume that f
is such that the chain rule applies. Then

IE(Ff(F )) = IE(〈DF,−DL−1F 〉L2(µ))

= IE(f ′(F )〈DF,−DL−1F 〉L2(µ))

Corollary 3. Take F = Iq(f) and n ≥ 1. Then

IE(Fn+1) = IE(FFn) = nIE(Fn−1〈DF,−DL−1F 〉L2(µ))

=
n

q
IE(Fn−1‖DF‖2L2(µ)),

where L−1F = −1
qF . In particular, we have

IE(F 4) =
3

q
IE
(
F 2‖DF‖2L2(µ)

)
.
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Part III

Stein meets Malliavin

Via the Stein’s approach, we have already seen that for any integrable random
variable F ∈ L1(IP) we have

dTV (F,N (0, 1)) ≤ sup
f∈FTV

∣∣IE(Ff(F )− f ′(F ))
∣∣

with FTV = {‖f‖ ≤
√
π/2, ‖f ′‖ ≤ 2}. As was noted before, the supremum

is annoying. The following theorem shows that, in the Gaussian framework,
things are extremely favorable. Hereon, we assume that G is a Gaussian
random measure over (A,A, µ), and all random variables are measurable
functionals of G.

Theorem 5. Let F ∈ dom(D) with IE(F ) = 0. Assume that F has a density
(to use Proposition 7). Then

dTV (F,N (0, 1)) ≤ 2IE
∣∣1− 〈DF,−DL−1F 〉L2(µ)

∣∣ .
We have thus reduces the problem of controlling the TV distance to the

computation of an expectation!

Proof. For every f ∈ FTV, and using Proposition 7 we have∣∣IE(Ff(F )− f ′(F ))
∣∣ =

∣∣IE(f ′(F )(〈DF,−DL−1F 〉L2(µ) − 1))
∣∣

≤ 2IE
∣∣(〈DF,−DL−1F 〉L2(µ) − 1)

∣∣ .
Note that to obtain the last inequality in above, we use the fact that
‖f ′‖∞ ≤ 2 for every f ∈ FTV.

Corollary 4. If F = I1(h), i.e. F ∼ N (0, ‖h‖2) then

〈DF,−DL−1F 〉L2(µ) = ‖h‖2.

Hence
dTV (I1(h),N (0, 1)) ≤ 2

∣∣1− ‖h‖2∣∣ .
Corollary 5. If F = Ip(h) for some f ∈ L2

sym(µp), then 〈DF,−DL−1F 〉L2(µ) =
1
p‖DF‖

2, and hence

dTV (F,N (0, 1)) ≤ 2IE

∣∣∣∣1− 1

p
‖DF‖2

∣∣∣∣
≤ 2

√
IE

(
1− 1

p
‖DF‖2

)2

.
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Therefore, for a sequence {Fn = Ip(hn)}n≥1 of multiple integrals of a fixed
order p ≥ 2 such that IE(Fn)2 → 1, we have

‖DFn‖2L2(µ)

L2(IP)−→ p =⇒ Fn
law→ N (0, 1).

Corollary 6. If F = Ip(h) for some f ∈ L2
sym(µp), and IE(F 2) = σ2. Then

dTV(F,N (0, σ2)) ≤ 2

σ2

√
IE

(
σ2 − 1

p
‖DF‖2

)2

. (12)

Hence,

dTV(F,N (0, 1)) ≤ 2|1− σ2|+ 2

σ2

√
Var

(
1

p
‖DF‖2

)
. (13)

Moreover, for a sequence {Fn = Ip(hn)}n≥1 of multiple integrals of a fixed
order p ≥ 2 such that IE(F 2

n)→ σ2 > 0, we have

‖DFn‖2L2(µ)

L2(IP)−→ p× σ2 =⇒ Fn
law→ N (0, σ2).

Proof. For the claim (12), use the facts that if N ∼ N (0, σ2), then N
σ ∼

N (0, 1) together with

dTV(F,N (0, σ2)) = dTV(
F

σ
,
N

σ
).

Now, just left to apply Corollary 5. For the claim (13), use the triangular
inequality, Corollary 4 and the relation (12). Note that when IE(F 2) =
σ2, then IE(1p‖DF‖) = IE(F 2), by using the Malliavin integration by part
formula.

Now, we are ready to state that approximating random variables in a
fixed Wiener chaos by Gaussian is a nontrivial enterprise.

Theorem 6 (Nourdin–Peccati (2009) 3). Let p ≥ 2 and f ∈ L2
sym(µp) 6= 0.

Take F = Ip(f). Then

dTV (F,N (0, 1)) ≤ 2
∣∣1− IE(F 2)

∣∣+ 2

√
Var

(
1

p
‖DF‖2

)
≤ 2

∣∣1− IE(F 2)
∣∣+ 2

√
p− 1

3p

√
IE(F 4)− 3IE(F 2)2. (14)

3 Nourdin, I., Peccati, G. (2009) Stein’s method on Wiener chaos. Probab. Theory
Related Fields, 45, no. 1-2, 75-118
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Note that
√

p−1
3p ≤

2√
3

and is thus independent of p.

In particular in order to have a CLT in a fixed Wiener chaos it suffices to
control the fourth moments (whereas before this discovery, one had to show
convergence of all moments!).

Corollary 7 (Nualart–Peccati (2005)). Assume that Fn = Ip(fn) for p ≥ 2
such that IE(F 2

n)→ 1. Then

Fn → N (0, 1)

in TV distance (and in particular, in distribution) if and only if

IE(F 4
n)→ 3 = IE(N (0, 1)4).

Remark 10. The “If” part of Corollary 7 is a consequence of (14). On
the other hand if IE(F 2

n)→ 1 and Fn → N (0, 1) in distribution, then for all
r ≥ 2 the sequence {IE(|Fn|r)} is bounded by hypercontractivity and thus, for
all r ≥ 3, we have

IE(F rn)→ IE(N (0, 1)r).

Proof of Theorem 6. We aim to prove that

Var(
1

p
‖DF‖2) ≤ p− 1

3p

{
IE(F 4)− 3IE(F 2)2

}
.

We are going to use the formula

IE(F 4) =
3

p
IE(F 2‖DF‖2L2(µ)).

The whole proof relies on the derivation of the chaotic decompositions of the
rv’s of interest. Now, for F = Ip(f) recall that DtF = pIp−1(f(t, ·)) to write
(using product formula)

1

p
‖DF‖2 = p

∫
A
µ(dt)(Ip−1(f(t, ·)))2

= p

∫
A
µ(dt)

p−1∑
r=0

r!

(
p− 1

r

)2

I2(p−1)−2r( ˜f(t, ·)⊗r f(t, ·))

= p

p−1∑
r=0

r!

(
p− 1

r

)2

I2p−2(r+1)( ˜f ⊗r+1 f)
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where to obtain this we have used a stochastic integral version of Fubini’s
theorem. Pursuing with a change of summation variables we deduce

1

p
‖DF‖2 = p

p∑
r=1

(r − 1)!

(
p− 1

r − 1

)2

I2p−2r(f̃ ⊗r f)

= p!‖f‖2 + p

p−1∑
r=1

(r − 1)!

(
p− 1

r − 1

)2

I2p−2r(f̃ ⊗r f).

Note that p!‖f‖2 = IE(F 2), and we get

1

p
‖DF‖2 = IE(F 2) + p

p−1∑
r=1

(r − 1)!

(
p− 1

r − 1

)2

I2p−2r(f̃ ⊗r f).

Since we have already shown that 1
p IE(‖DF‖2) = IE(F 2) we deduce, by

orthogonality of Wiener chaoses, our first estimate

Var

(
1

p
‖DF‖2

)
=

p−1∑
r=1

p2(r − 1)!2
(
p− 1

r − 1

)4

(2p− 2r)!‖f̃ ⊗r f‖2

=
1

p2

p−1∑
r=1

r2r!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2.

(15)

Now we also have

F 2 =

p∑
r=0

r!

(
p

r

)2

I2p−2r(f̃ ⊗r f) = p!‖f‖2 +

p−1∑
r=0

r!

(
p

r

)2

I2p−2r(f̃ ⊗r f). (16)

We can now compute the fourth moment

IE(F 4) = 3IE(F 2 × 1

p
‖DF‖2)

= 3IE(F 2)2 + 3

p−1∑
r=1

pr!(r − 1)!

(
p

r

)2(p− 1

r − 1

)2

(2p− 2r)!‖f̃ ⊗r f‖2.

(17)

Therefore,
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IE(F 4)− 3IE(F 2)2 = 3p

p−1∑
r=1

r!(r − 1)!

(
p

r

)2(p− 1

r − 1

)2

(2p− 2r)!‖f̃ ⊗r f‖2

=
3

p

p−1∑
r=1

rr!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2.

(18)

Comparing the sums in (15) and (18) we recover the desired inequality

Var

(
1

p
‖DF‖2

)
≤ p− 1

3p

{
IE(F 4)− 3IE(F 2)2

}
. (19)

Note that the following estimate is also in order:

p− 1

3p

{
IE(F 4)− 3IE(F 2)2

}
≤ (p− 1)Var

(
1

p
‖DF‖2

)
.

Remark 11. The proof of Theorem 6 reveals that for any multiple integral
F = Ip(f) of order p ≥ 2 the following surprising fact takes place:

κ4(F ) = IE(F 4)− 3IE(F 2)2 > 0.

Recall that when p = 1, then κ4(F ) = 0. What about κ6(F ) ≥ 0? This
question is still totally open in its full generality! (see [2] for more detailed
discussion).

Remark 12. If one instead using the clever Malliavin relation

IE(F 4) =
3

p
IE(F 2‖DF‖2L2(µ))

by expanding F 4 on Wiener chaoses to compute IE(F 4) what we will end up
with (take into account 16)

IE(F 4) = IE(F 2 × F 2) =

p∑
r=0

r!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2

= p!2‖f‖4 + (2p)!‖f̃ ⊗0 f‖2 +

p−1∑
r=1

r!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2

= IE(F 2)2 + (2p)!‖f̃ ⊗0 f‖2 +

p−1∑
r=1

r!2
(
p

r

)4

(2p− 2r)!‖f̃ ⊗r f‖2.
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Hence, we have the presence of the norm of the zero-contraction ‖f̃ ⊗0 f‖2,
which in fact never appears in the expansion Var

(
1
p‖DF‖

2
)

. Therefore,

using this approach, one needs to represent the norm of the zero-contraction

‖f̃ ⊗0 f‖2 in terms of the norm of other non-zero contraction to be able to
do comparison. Fortunatly, this can be done and is the message of the next
exercise. Here, we highlight that the appearance of norms (inner products) of
zero-contractions involving the kernel f is in fact one of the main obstacles in
front towards generalization of the Malliavin-Stein approach for non-Gaussian
approximation using product formula as the main tools. A typical example
is when the target distribution is of the form N1×N2 and N1, N2 ∼ N (0, 1)
are independent. More precisely, we want to understand the possibility of
convergence

Ip(fn)
law→ N1 ×N2

in terms of convergence of finitely many moments/cumulants. Let’s stress
that also the lack of the Stein’s method for the target distribution N1 ×N2!
So, one needs to take a different paths. Hopefully, this we can consider in
more details in the last week of the course.

Exercise 6. (a) Show that

(2p)!‖f̃ ⊗0 f‖2 = 2(p!)2‖f‖4 + p!2
p−1∑
r=1

(
p

r

)2

‖f ⊗r f‖2.

(b) Use part (a) to show that

IE(F 4)− 3IE(F 2)2 = p!2
p−1∑
r=1

(
p

r

){
‖f ⊗r f‖2 +

(
2p− 2r

p− r

)
‖f̃ ⊗r f‖2

}
.

Corollary 8. Assume that {Fn = Ip(fn)}n≥1 is a sequence of multiple
integrals of fixed order p ≥ 2 such that IE(F 2

n) → 1. Then the following
statements are equivalent.

(a) Fn
law→ N (0, 1).

(b) IE(F 4
n)→ 3 = IE(N4), where N ∼ N (0, 1).

(c) ‖DFn‖2
L2(IP)→ p.

(d) ‖ ˜fn ⊗r fn‖L2(µ2p−2r) → 0 for all 1 ≤ r ≤ p− 1.
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(e) ‖fn ⊗r fn‖L2(µ2p−2r) → 0 for all 1 ≤ r ≤ p− 1.

Proof. We are just left to show the implication (e) ⇒ (a). Statement (e),

and ‖ ˜fn ⊗r fn‖L2(µ2p−2r) ≤ ‖fn ⊗r fn‖L2(µ2p−2r), together with Exercise 6,
part (b), imply that in fact κ4(Fn)→ 0. So, we are done.

Remark 13. The computations in the proof show that there exists a constant
c := c(p) > 0 only depending on p for which

dTV(Ip(f),N (0, 1)) ≤ c(p) max
r=1,...,p−1

{
‖f̃ ⊗r f‖L2(µ2p−2r)

}
≤ c(p) max

r=1,...,p−1

{
‖f ⊗r f‖L2(µ2p−2r)

}
(20)

The estimate in (20) is that which is most used in practical situations since
it is easier to estimate contractions rather than moments.

Problem 2. Can the maximum in (20) attain in, at least, one running index
r? maybe middle running index ? A positive answer to this problem decrease
drastically the complexity of checking CLTs on Wiener chaos.

Remark 14. We have already seen that for a sequence {Fn = Ip(fn)}n≥1
the convergences IE(F 2

n)→ 1 and IE(F 4
n)→ 3 = IE(N4) imply Fn converges

in distribution towards N ∼ N (0, 1). It is a natural question to ask that
why the fourth moment? In other words, do the other even moments do
the same job as the fourth moment ? For example, do the convergences
IE(F 2

n)→ 1 and IE(F 6
n)→ 15 = IE(N6) imply the convergence in distribution

towards N (0, 1)? In fact, it was an open problem in this modern domain of
probabilistic approximations since appearance of the Nualart–Peccati fourth
moment theorem in 2005. It can be easily seen that if one expands F 6 (where
F = Ip(f)) on Wiener chaoses to use product formula, then immediately
very involved expressions such as inner products of three copies of the kernel
f appears and makes this approach completely hopeless. Recently, in [2],
we create a novel approach using Markov triplet (one of the topics we will
briefly study during the last week of the course) to give a positive answer
to this rather long-standing open problem. In fact, we prove that for every
r ≥ 2

IE(F 2
n)→ 1 & IE(F 2r)→ IE(N2r) = (2r − 1)!! ⇐⇒ Fn

law→ N (0, 1).
(21)
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Another interesting question to ask here is: can one replace the convergence
of the second moment in (21) with convergence of some other even moments?
For example,

IE(F 6
n) → IE(N6) & IE(F 8

n) → IE(N8)
?

=⇒ Fn
law→ N (0, 1). (22)

Using the techniques developed in [2], we could also give a positive answer to
(22). However, we failed to prove it for convergences of the eighth and tenth
moments. Theses observation lead us to the following interesting conjecture
(any idea?).

Conjecture 1. Let {Fn = Ip(fn)}n≥1, and p ≥ 2. Then for every r 6= s

IE(F 2r
n )→ IE(N2r) = (2s− 1)!! & IE(F 2s)→ IE(N2s) = (2s− 1)!!

⇐⇒ Fn
law→ N (0, 1). (23)

3.3 multidimensional case

Let d ≥ 2, and fix d natural numbers 1 ≤ p1 ≤ p2 ≤ · · · ≤ pd. Consider a
sequence of d-dimensional random vectors of the form

Fn = (F 1
n , · · · , F dn) = (Ip1(f1n), · · · , Ipd(f

d
n)). (24)

Our aim in this section is to prove the following multidimensional version of
the fourth moment theorem due to Peccati–Tudor (2005).

Theorem 7. Let Fn be a sequence of d-dimensional random vectors of the
form (25) such that

lim
n→∞

IE(F in × F jn) = δij , 1 ≤ i, j ≤ d.

Then the following statements are equivalent.

(a) F in
law→ N (0, 1), for all 1 ≤ i ≤ d.

(b) IE(F in)4 → 3, for all 1 ≤ i ≤ d.

(c) ‖DF in‖2
L2(IP)→ pi, for all 1 ≤ i ≤ d.

(d) ‖f in ⊗r f in‖L2(µ2pi−2r) → 0, for all 1 ≤ i ≤ d, and r = 1, · · · , pi − 1.

(e) Fn
law→ Nd(0, Id).
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In other words, Theorem 7 tells us that the component-wise convergence
to Gaussian distributions implies the joint convergence of the vector to the
multidimensional Gaussian. There are different ways to prove Theorem 7.
Here, we follow the path was developed by Nualart & Ortiz-Latorre. Their
strategy mainly consists of showing that the characteristic function of any
adherence value in distribution satisfies in the same ordinary differential
equation as the characteristic function of the d-dimensional Gaussian random
variable. The advantage of their approach compare to multidimensional
Stein’s method (which is more involved compare to one dimensional version)
is its simplicity and as drawback this approach is not quantitative, and
hence one can not provide any rate of convergence. The interested reader
can consult [5, Chapter 6] for a proof of Theorem 7 using multidimensional
Stein’s method. The token of the main part of Theorem 7 can be decoded
using the following lemma in which the Malliavin derivative matrix

Γn = (Γi,jn )1≤i,j≤d =
(
〈DF in, DF jn〉L2(µ)

)
1≤i,j≤d

plays an essential role. The Malliavin derivative matrix Γ is in the core of
the studies of regularities of laws of random vectors (see [7, Chapter 2]).
In the next lemma, we will use again heavily the specific structure of the
underlying random variables.

Lemma 4. Let

Fn = (F 1
n , · · · , F dn) = (Ip1(f1n), · · · , Ipd(f

d
n)) (25)

such that for every 1 ≤ i, j ≤ d, IE(F in × F
j
n)→ δi,j. Then

‖DF in‖2
L2(IP)→ pi =⇒ Γi,jn = 〈DF in, DF jn〉L2(µ)

L2(IP)→ √
pipjδi,j .

Proof. We need to show that for any i < j (and so pi ≤ pj) we have

lim
n→∞

IE
(
〈DF in, DF jn〉2L2(µ)

)
= 0.

Using exercise 2, part (a), we know that

IE
(
〈DF in, DF jn〉2

)
L2(µ)

=

pi∑
r=1

(pi!pj !)
2

((pi − r)!(pj − r)!(r − 1)!)2
‖f in⊗̃rf jn‖2

≤
pi∑
r=1

(pi!pj !)
2

((pi − r)!(pj − r)!(r − 1)!)2
‖f in ⊗r f jn‖2
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So, we are left to show that ‖f in ⊗r f
j
n‖2 → 0 for all 1 ≤ r ≤ pi. Using the

very definition of the contraction, Fubini’s theorem, and Cauchy–Schwarz
inequality, we can write

‖f in ⊗r f jn‖2 = 〈f in ⊗r f jn, f in ⊗r f jn, 〉L2(µpi+pj−2r)

= 〈f in ⊗pi−r f in, f jn ⊗pj−r f jr 〉L2(µ2r)

≤ ‖f in ⊗pi−r f in‖ × ‖f jn ⊗pj−r f jn‖.

(26)

Case (a): if r = pi = pj , then ‖f in ⊗r f
j
n‖2 =

(
IE(F in × F

j
n)
)2
→ 0 by

assumption. Case (b): if 1 ≤ r ≤ pi − 1, then assumption ‖DF in‖2
L2(IP)→ pi

implies that F in
law→ N (0, 1) and therefore ‖f in ⊗r f in‖2 → 0 for all 1 ≤ r ≤

pi − 1. Hence, the right hand side inequality (26) tends to zero. Case (c): if
r = pi < pj . In this case, the right hand side of (26) takes the form

‖f in ⊗pi−r f in‖ × ‖f jn ⊗pj−r f jn‖ = ‖f in‖2 × ‖f jn ⊗pj−r f jn‖
= IE(F in)2 × ‖f jn ⊗pj−r f jn‖ → 0,

Because IE(F in)2 → 1 and so bounded and ‖f jn ⊗pj−r f
j
n‖ → 0.

Proof. Proof of Theorem 7. It is enough to prove the implication (c)⇒ (e).
Since IE(F in × F

j
n)→ δi,j , for i = j, this implies that supn≥1 IE(F in)2 < +∞.

Therefore, the sequence {Fn}n≥1 is tight, and so it is enough to show that
the limit of any convergence in distribution subsequence {Fnk}n≥1 is in

fact Nd(0, Id). To this end, assume that Fnk
law→ F∞, as k → ∞ for some

random vector F∞ = (F 1
∞, · · · , F d∞). By our assumptions, first we have

that F i∞ ∈ L2(Ω) for all 1 ≤ i ≤ d, and moreover IE(F i∞ × F j∞) = 0 if
i 6= j. Now, let’s denote the characteristic function ϕn(t) = IE(ei〈t,Fn〉IRd )
for t ∈ IRd. Then ϕnk(t) → ϕ(t) for any t, where ϕ∞ is the characteristic

function of F∞. Note that the fact that F j∞ ∈ L2(Ω) implies that the partial
derivatives ∂

∂tj
ϕ∞ = iIE(F j∞e

i〈t,F∞〉IRd ) are well defined. Now, continuous

mapping theorem tells us that

Fnke
i〈t,Fnk 〉IRd law→ F j∞e

i〈t,F∞〉IRd . (27)

Note that the sequence in the left hand side of (27) is bounded in L2(Ω)
and so uniformly integrable. Hence, for all 1 ≤ j ≤ d, and t ∈ IRd, as k →∞:

∂

∂tj
ϕnk(t) = iIE(F jnke

i〈t,Fnk 〉IRd )→ ∂

∂tj
ϕ∞ = iIE(F j∞e

i〈t,F∞〉IRd ). (28)
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On the other hand side, using integration by part formula: (note that
IE(F jnk) = 0)

IE
(
F jnke

i〈t,Fnk 〉IRd
)

= IE
(
〈Dei〈t,Fnk 〉IRd ,−DL−1F jnk〉

)
= − i

pj

d∑
l=1

tl IE
(
ei〈t,Fnk 〉IRd IE(〈DF lnk , DF

j
nk
〉)
)

= − i

pj

d∑
l=1

tl IE
(
ei〈t,Fnk 〉IRdΓl,jnk

)
.

Therefore

∂

∂tj
ϕnk(t) = − 1

pj

d∑
l=1

tl IE
(
ei〈t,Fnk 〉IRdΓl,jnk

)
.

Hence, Lemma 4 implies that the charactrisitic function ϕ∞ satisfies in
equation

∂

∂tj
ϕ∞(t) = −tjϕ∞(t),

for all j = 1, · · · , d and t ∈ IRd. Therefore, the only possibility for ϕ∞ is to
be the characteristic function of Nd(0, Id).

We finish this section with the following very general result.

Theorem 8. Let {Fn}n≥1 be a square-integrable sequence with the following
chaos decompositions: for every n ≥ 1

Fn =

∞∑
p=1

Ip(fn,p). (29)

In addition, assume the following:

(a) for all p ≥ 1, we have p!‖fn,p‖2 → σ2p.

(b)
∑

p≥1 σ
2
p < +∞.

(c) for all p ≥ 2 and every r = 1, · · · , p − 1, we have ‖fn,p ⊗r fn,p‖ → 0,
as n→∞.
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(d)

lim
N→∞

sup
n≥1

∞∑
p=N+1

p! ‖fn,p‖2 = 0.

Then we have Fn
law→ N (0, σ2).

Proof. For all N ≥ 1, set

Fn,N =
N∑
p=1

Ip(fn,p)

GN ∼N (0, σ21 + · · ·+ σ2N )

G ∼N (0, σ2).

Therefore, for any t ∈ IR:

∣∣∣IE(eitFn)− IE(eitG)
∣∣∣ ≤ ∣∣∣IE(eitFn)− IE(eitFn,N )

∣∣∣
+
∣∣∣IE(eitFn,N )− IE(eitGN )

∣∣∣
+
∣∣∣IE(eitGN )− IE(eitG)

∣∣∣ := an,N + bn,N + cN .

Note that

cN =
∣∣∣e− t22 (σ2

1+···+σ2
N ) − e−

t2

2
σ2
∣∣∣ ≤ t2

2

∣∣∣σ2 − N∑
i=1

σ2i

∣∣∣→ 0,

as N →∞, because of assumption (b). Moreover,

sup
n≥1

an,N = sup
n≥1

∣∣∣IE(eitFn)− IE(eitFn,N )
∣∣∣

≤ |t| sup
n≥1

IE|Fn − Fn,N | ≤ |t|
√

sup
n≥1

IE(Fn − Fn,N )2

≤ |t|
√

sup
n≥1

∑
p≥N+1

σ2p → 0,

by assumption (d). Hence, for ε > 0, choose N large enough so that
supn≥1 an,N ≤ ε/3 and cN ≤ ε/3. Also, according to Peccati–Tudor multidi-
mensional version of the fourth moment theorem, we have in fact that, as
n→∞,

34



(I1(fn,1), · · · , IN (fn,N ))
law→ NN

(
0,diag(σ21, · · · , σ2N )

)
.

Therefore, Fn,N =
∑N

p=1 Ip(fn,p)
law→ N (0, σ21 + · · ·+ σ2N ). Hence, bn,N ≤ ε/3

if n is large enough.
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