
Probabilistic approximations, spring 2015 Azmoodeh/Gasbarra
Third Exercise Sheet
Wednesday May 27 at 10-12 in B322

Remark. The exercises should be returned to Dario Gasbarra in
his e/mail in/box, B314 or dario.gasbarra@helsinki.fi, before the
time of the exercise class.

1. Use Moment Matrices M2 and M3 in the lecture note to deduce the
following generalization of the fourth moment theorem: Let N ∼
N (0, 1). For a sequence {Xn}n≥1 of the elements in a fixed Wiener
chaos of order p ≥ 2, we have

IE(X4
n)→ IE(N4) = 3

IE(X6
n)→ IE(N6) = 15

⇐⇒ Xn
law−→ N (0, 1).

An interested maths-problem solver can also try to show that the even
moments couple (4, 6) can be also replaced with the even moments
couples (4, 8) and (6, 8)! What about the couple (8, 10) ? This is, in
fact, still an open problem!

2. Use moment matrix M3 to prove that if X = Ip(f) is a multiple integral
of odd order p such that IE(X2) = 1 and κ4(X) ≥ 3, then κ6(X) ≥ 0.
[Hint: the order p is odd implies that IE(X3) = 0.]
Any idea how to relax the condition κ4(X) ≥ 3 ? In fact, it is con-
jectured that (known as Γ2 conjecture) for any multiple integral
X = Ip(f) of any order p ≥ 2 there exists some constant Cp such that

Var(Γ2(X)) ≤ Cp κ6(X), (?)

where Γ1(X) = 〈DX,−DL−1X〉, and Γ2(X) = 〈DX,−DL−1Γ1(X)〉.
A direct consequence of the Γ2 conjecture is that always κ6(X) > 0!
The estimate (?) has to be compared with the well-known fourth
moment estimate

Var(Γ1(X)) ≤ Cp κ4(X).

3. (Convergence to centered chi-square law) Fix an integer ν ≥ 1,
and let N1, · · · , Nν be independent N (0, 1) random variables. Consider
F∞ = −ν +

∑ν
i=1N

2
i , that is, F∞ has the centered chi-square law with

ν degrees of freedom. Let p ≥ 2 be an even integer, and define

cp :=
1

(p/2)!
( p−1
p/2−1

)2 =
4

(p/2)!
( p
p/2

)2 . (0.1)
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Let Fn = Ip(fn) be a sequence of multiple integrals such that IE(F 2
n) =

2ν for all n. Consider the following four assumptions, as n→∞:

(i) IE(F 4
n)− 12IE(F 3

n) −→ 12ν2 − 48ν.

(ii) ‖fn⊗̃p/2fn−cpfn‖→ 0 and ‖fn⊗̃rfn‖→ 0 for every r = 1, · · · , p−1
such that r 6= p/2.

(iii) ‖DFn‖2−2pFn → 2pν in L2(Ω).

(iv) Fn converges in distribution toward F∞.

The aim of this exercise is to show that these four assumptions are
equivalent. (a): Use Hypercontractivity on Wiener chaoses to show
that supn≥1 IE|Fn|q< +∞ for all q ≥ 2. deduce that (iv) implies (i).
(b): Use product formula and isometry to prove that

IE(F 3
n) = p! (p/2)!

(
p

p/2

)2

〈fn, fn⊗̃p/2fn〉. (0.2)

(c): Use the expression in terms of the norms of the contractions
obtained in the lecture note for IE(F 4

n) with (0.2) to deduce that

IE(F 4
n)−12IE(F 3

n) = 12ν2 + 3/p
∑

r=1,···,p−1& r 6=p/2

p2(r − 1)!

(
p− 1

r − 1

)2

p!

(
p

r

)2

× (2p− 2r)! ‖fn⊗̃rfn‖2

+ 3p(p/2− 1)!

(
p− 1

p/2− 1

)2

(p/2)!

(
p

p/2

)2

p! ‖fn⊗̃p/2fn‖2

− 12p! (p/2)!

(
p

p/2

)2

〈fn, fn⊗̃p/2fn〉.

(0.3)

(d): Use elementary simplifications, check that

3/2
(p! )5

[(p/2)! ]6
‖fn⊗̃p/2fn − cp × fn‖2

= −12p! (p/2)!

(
p

p/2

)2

〈fn, fn⊗̃p/2fn〉+ 24p! ‖fn‖2

+ 3p(p/2− 1)!

(
p− 1

p/2− 1

)2

(p/2)!

(
p

p/2

)2

p! ‖fn⊗̃p/2fn‖2.

(0.4)

Deduce that (i) and (ii) are equivalent.
(e): Show that
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IE[Fn‖DFn‖2] = p2(p/2− 1)!

(
p− 1

p/2− 1

)2

p! 〈fn, fn⊗̃p/2fn〉. (0.5)

(f): Use (0.5) and the expression in terms of the norm of the contrac-
tions for Var(1/p‖DFn‖2) in the lecture note to show that, if (ii) holds,
then IE[(‖DFn‖2−2pFn − 2pν)2]→ 0, as n→∞, that is, (ii) implies
(iii).
(g): Show that (iv) holds iff any subsequence {Fnk} converging in dis-

tribution to some random variable G is necessarily such that G
law
= F∞.

(Hint: Use Prokhorov’s theorem.)
(h): Assume that Fn converges in distribution to some G, and let
ϕn(λ) := IE(eiλFn). Prove that ϕ′n(λ) −→ IE(eiλG).
(i): Show that ϕ′n(λ) = −λ/pIE[eiλFn‖DFn‖2].
(j): Assume that (iii) holds and Fn converges in distribution to some
G. Let ϕ∞(λ) = IE(eiλG). Prove that

(1− 2iλ)ϕ′∞(λ) + 2λνϕ∞(λ) = 0.

Deduce that ϕ∞(λ) =
(

e−iλ√
1−2iλ

)ν
, and then G

law
= F∞.

(k): Show that (iii) implies (iv).
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