Probabilistic approximations, spring 2015

Azmoodeh/Gasbarra

Second Exercise Sheet

Thursday April 30 at 12-14 in B321

Remark. The exercises should be returned to Dario Gasbarra in his e/mail in/box, B314 or dario.gasbarra@helsinki.fi, before the time of the exercise class.

1. (a) Let $F_n = I_p(f_n)$ for some fixed $p \geq 2$ such that $\mathbb{E}(F_n^2) = 1$ for all n. Denote by $\phi_n(\lambda) = \mathbb{E}(e^{i\lambda F_n})$ the characteristic function of F_n . Show that, for every real λ ,

$$\phi'_n(\lambda) = \frac{i\lambda}{p} \mathbb{E}(e^{i\lambda F_n} ||DF_n||^2).$$

(b) By using part (a), as well as the fact that the mapping $t \mapsto \mathbb{E}(e^{itN})$, $N \sim \mathcal{N}(0,1)$, is the unique solution to the differential equation $\phi'(t) + t\phi(t) = 0$, $\phi(0) = 0$ prove that the following implication:

$$\mathbf{Var} \|DF_n\|^2 \to 0 \Longrightarrow F_n \overset{\text{law}}{\to} \mathcal{N}(0,1).$$
 (*)

2. (a) For any two multiple integrals $F = I_p(f)$ and $G = I_q(g)$, where $p, q \ge 1$ show that

$$\mathbb{E}(\langle DF, DG \rangle_{L^{2}(\mu)}^{2}) = \sum_{r=1}^{p \wedge q} \frac{(p! \, q! \,)^{2}}{((p-1)! \, (q-1)! \, (r-1)! \,)^{2}} \|f \tilde{\otimes}_{r} g\|^{2}.$$

- (b) In addition, assume that $\mathbb{E}(F^2) = 1$. Show that $\mathbb{E}(\|DF\|^4) = p^2$ if, and only if, $\mathbf{Var}\|DF\|^2 = 0$.
- (c) Use parts (a) and (b) to give a proof of implication (\star) for a sequence $F_n = I_p(f_n)$ of multiple integrals with fixed order such that $\lim_{n\to\infty} \mathbb{E}(F_n^2) = 1$.
- 3. (a) Let $p,q \ge 1$. For two symmetric kernels $f \in L^2(\mu^p)$ and $g \in L^2(\mu^q)$ show that

$$||f \tilde{\otimes} g||^2 = \frac{p! \, q!}{(p+q)!} \sum_{r=0}^{p \wedge q} \binom{p}{r} \binom{q}{r} ||f \otimes_r g||^2.$$

(b) For any two multiple integrals $F = I_p(f)$ and $G = I_q(g)$, where $p, q \geq 1$, use multiplication formula to show that

$$\mathbb{E}(F^2G^2) = \sum_{r=0}^{p \wedge q} r!^2 \binom{p}{r}^2 \binom{q}{r}^2 (p+q-2r)! \|f\tilde{\otimes}_r g\|^2.$$

(c) Using $\mathbb{E}(F^2)\mathbb{E}(G^2) = p!\,q!\,\|f\|^2\|g\|^2$, parts (a) and (b) to deduce that

$$Cov(F^2, G^2) \ge p! \, q! \, pq \|f \otimes_1 g\|^2.$$

As a result, always $\mathbf{Cov}(F^2, G^2) \ge 0!$.

(One can also show that $\mathbf{Cov}(F^2, G^2) \ge \max_{r=1,\dots,p \land q} ||f \otimes_r g||^2$.)

- (d) Prove that $f \otimes_1 g = 0$ whenever F and G are independent. [In fact, the condition $f \otimes_1 g = 0$ is sufficient for independence of F and G. This is know as **Zakai-Üstünel** criterion.]
- 4. Let $F = (F_1, F_2) = (I_2(f_1), I_2(f_2))$ be a two dimensional random vector with components of multiple integrals of order 2. Denote the Malliavin matrix $\Gamma(F) := (\langle DF_i, DF_j \rangle)_{1 \leq i,j \leq 2}$, and the covariance function of F by C. Show that

$$\mathbb{E}\det(\Gamma(F)) \ge 4 \det C$$

and using the following result to deduce that the law of random vector F has a density if, and only if, $\det C > 0$.

- **Theorem 0.1.** Let $F = (F_1, \dots, F_d)$ where each component F_i lives in a finite sum of Wiener chaoses for all $1 \le i \le d$. Then, the law of random vector F is not absolutely continuous with respect to Lebesgue measure if, and only if $det(\Gamma(F)) = 0$.
- 5. Let $F_n = I_p(f_n)$ and $G_n = I_q(g_n)$, be two sequences of **independent** multiple integrals, with $p, q \geq 1$. Assume that $\mathbb{E}(F_n^2) \to \alpha^2 > 0$, $\mathbb{E}(G_n^2) \to \beta^2 > 0$, and $F_n + G_n \stackrel{\text{law}}{\to} \mathcal{N}(0, \alpha^2 + \beta^2)$ as $n \to \infty$. Prove that both

$$d_{\text{TV}}(F_n, \mathcal{N}(0, \alpha^2)) \to 0$$
, and $d_{\text{TV}}(G_n, \mathcal{N}(0, \beta^2)) \to 0$.