
Probabilistic approximations, spring 2015 Azmoodeh/Gasbarra
First Exercise Sheet
Friday March 27 at 10-12 in room B321

Remark. The exercises should be returned to Dario Gasbarra to
his e/mail in/box, B314 or dario.gasbarra@helsinki.fi, before the
time of the exercise class.

1. (a) Let f : IR → IR be an absolutely continuous function such that
f ′ ∈ L1(γ) (here γ stands for the standard Gaussian measure on
(IR,B(IR))). Show that the function x 7→ x f(x) ∈ L1(γ), and moreover∫

IR
xf(x)γ(dx) =

∫
R
f ′(x)γ(dx).

[Hint: Use Fubini’s Theorem.]
(b) The moment sequence {mn(γ)}n≥0 of standard Gaussian measure
γ is defined as

mn(γ) :=

∫
IR
xnγ(dx), n ≥ 0.

Show that the sequence {mn(γ)}n≥0 satisfies in the recursion formula
mn+1(γ) = n×mn−1(γ). Moreover, show that

mn(γ) =

{
(n− 1)! ! if n is even,

0 if n is odd,

where the notation double factorial in s defined as n! ! = n(n− 2)(n−
4) · · · . [Hint: Use part (a) and induction.]

2. (a) Let d ≥ 1. Show that the topologies induced by three distances
dTV, dKol and dW on the set of probability measures on IRd is strictly
stronger than the topology induced by the convergence in distribution.
(b) Let d ≥ 1. Show that for any two IRd-valued random variables F
and G we have

dTV(F,G)

=
1

2
sup{|IE[h(F )]−IE[h(G)]| : h is Borel-measurable and ‖h‖∞≤ 1}.

(c) Let F be a real-valued random variable and N ∼ N (0, 1). Show
that

dKol(F,N) ≤ 2
√
dW(F,N).
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[Hint: Choose a ”good” parameter α, and for fixed z ∈ IR, define the
Lipschitz function

hα(x) =


1 if x ≤ z,
0 if x ≥ z + α,

linear function if z < x < z + α.]

3. Stein’s bound for the Kolmogorov distance (a) For every z ∈ IR,
write fz = f1(−∞,z]

, that is, fz is the solution of the Stein’s equation
associated to the indicator function h = 1(−∞,z]. Also, Φ stands for the
cumulative distribution function of a N (0, 1) random variable. Show
that

fz(x) =


√

2πe
x2

2 Φ(x)[1− Φ(z)] if x ≤ z,
√

2πe
x2

2 Φ(z)[1− Φ(x)] if x ≥ z.

(b) Prove that, for every x ∈ IR, fz(x) = f−z(−x) (this implies that,
in the estimates below, one can assume that z ≥ 0 without loss of
generality).
(c) Compute the derivative d

dx [xfz(x)], and deduce that the mapping
x 7→ xfz(x) is increasing.
(d) Show that limx→−∞ xfz(x) = Φ(z)−1 and also that limx→+∞ xfz(x) =
Φ(z).
(e) Use part (a) to prove that

f ′z(x) =

[
√

2πxe
x2

2 Φ(x) + 1][1− Φ(z)] if x < z,

[
√

2πxe
x2

2 (1− Φ(x))− 1]Φ(z) if x > z.

(f) Use part (e) in order to prove that

0 < f ′z(x) ≤ zfz(x) + 1− Φ(z) < 1, ifx < z,

and

−1 < zfz(x)− Φ(z) ≤ f ′z(x) < 0, ifx > z

to deduce that ‖f ′z‖∞≤ 1.
(g) Use part (f) to show that x 7→ fz(x) attains its maximum in

x = z. Compute fz(z) and prove that fz(z) ≤
√
2π
4 for every z ∈ IR, to

complete a proof of the following theorem.
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Theorem 0.1. Let z ∈ IR. Then the function fz is such that ‖fz‖∞≤√
2π
4 and ‖f ′z‖∞≤ 1. Therefore, for N ∼ N (0, 1), and for any integrable

random variable F ,

dKol(F,N) ≤ sup
f∈FKol

|IE[f ′(F )]− IE[Ff(F )]|,

where FKol = {f : ‖f‖∞≤
√
2π
4 , ‖f ′‖∞≤ 1}.

4. Define the divergence operator δ on the space Dom(δ) ⊂ L2(IR, γ)

as δϕ(x) := −ϕ′(x)+xϕ = −e
x2

2
d
dx(e−

x2

2 ϕ(x)). Let p ≥ 0 be an integer.
We define the pth Hermite Polynomial as H0 = 1 and Hp = δp1,
where here δp = δ ◦ · · · ◦ δ, p times.
(a) Show that dδ − δd = Identity, where d = d

dx , and moreover δHp =
Hp+1, dHp = pHp−1 and (δ + d)Hp = xHp.
(b) for any p, q ≥ 0 show that∫

R
Hp(x)Hq(x)γ(dx) = δp,qp! ,

where here δp,q stands for the Kronecker delta.
(c) Show that the family { 1√

p!
Hp : p ≥ 0} is an orthonormal basis of

L2(IR, γ).
(d) Define the Ornstein-Uhlenbeck generator Lϕ(x) = −xϕ′(x) +
ϕ′′(x). Show that LHp = −pHp.

5. (a) Define the ‘carré-du-champ‘ operator Γ1 as

Γ1(F,G) :=
1

2
{L(FG)− FLG−GLF}.

Show that if F,G ∈ D1,2 then Γ1(F,G) = 〈DF,DG〉.
(b) Use part (a) to deduce that for F = Ip(f) we have

〈DF,−DL−1F 〉 =
1

p
Γ1(F, F ) =

1

p
‖DF‖2.

(c) Define the operator

Γ2(F,G) =
1

2
{L(Γ1(F,G))− Γ1(F,LG)− Γ1(G,LF )}.

Show that if F = Ip(f) then IE[Γ2(F, F )] = p2IE[F 2].
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