Logic I

Department of Mathematics and Statistics, University of Helsinki
Spring 2015
Exercises 9
Read chapters 2.10-2.11 on substitution and the deduction rules for the universal quantifier.

1. $($ Recap $)$ Let $\mathcal{M}=\left(M, R^{\mathcal{M}}\right)$, where

- $M=\{2,3,4,5,6\}$ and
- $(a, b) \in R^{\mathcal{M}}$ iff a divides b.

Which set does the formula
(1) $\exists x(R(x, y) \wedge \neg x=y)$
(2) $\exists y(R(x, y) \wedge \neg x=y)$
define in the model?
2. Is the term t free for the variable x in the formula A when
(1) t is y and A is $\exists y R(x, y)$
(2) t is y and A is $\exists x R(x, z)$
(3) t is y and A is $\exists z R(x, y)$
(4) t is z and A is $\exists z P(z) \wedge R(x, y)$
(5) t is z and A is $\exists z P(z) \wedge R(x, z)$

If the substitution is allowed, what is $A(t / x)$?
3. Prove the following special case of the Substitution Lemma: Let A be the formula $\forall z\left(R_{0}(y, z) \rightarrow P_{0}(z)\right)$. Let t be the variable x. Then the following are equivalent for all models \mathcal{M} and assignments s :
(1) $\mathcal{M} \models_{s} A(t / y)$
(2) $\mathcal{M} \models_{s(a / y)} A$, where $a=t^{\mathcal{M}}\langle s\rangle$.
4. Derive by natural deduction the sentence $\forall x R_{0}(x, x)$ from the sentence $\forall x \forall y R_{0}(x, y)$.
5. Derive the sentence $\neg \forall x P_{0}(x)$ from the sentence $\forall x \neg P_{0}(x)$.
6. Derive the sentence $\forall y P_{1}(y)$ from the sentences $\forall x P_{0}(x)$ and $\forall x\left(\neg P_{1}(x) \rightarrow\right.$ $\neg P_{0}(x)$).

