Logic I Department of Mathematics and Statistics, University of Helsinki Spring 2015 Exercises 9

Read chapters 2.10-2.11 on substitution and the deduction rules for the universal quantifier.

1. (Recap) Let $\mathcal{M} = (M, R^{\mathcal{M}})$, where

•
$$M = \{2, 3, 4, 5, 6\}$$
 and

• $(a,b) \in \mathbb{R}^{\mathcal{M}}$ iff a divides b.

Which set does the formula

(1) $\exists x (R(x, y) \land \neg x = y)$ (2) $\neg y (R(x, y) \land \neg x = y)$

(2) $\exists y (R(x,y) \land \neg x = y)$

define in the model?

2. Is the term t free for the variable x in the formula A when

(1) t is y and A is $\exists y R(x, y)$ (2) t is y and A is $\exists x R(x, z)$ (3) t is y and A is $\exists z R(x, y)$ (4) t is z and A is $\exists z P(z) \land R(x, y)$ (5) t is z and A is $\exists z P(z) \land R(x, z)$

If the substitution is allowed, what is A(t/x)?

3. Prove the following special case of the Substitution Lemma: Let A be the formula $\forall z(R_0(y,z) \rightarrow P_0(z))$. Let t be the variable x. Then the following are equivalent for all models \mathcal{M} and assignments s:

(1) $\mathcal{M} \models_s A(t/y)$ (2) $\mathcal{M} \models_{s(a/y)} A$, where $a = t^{\mathcal{M}} \langle s \rangle$.

4. Derive by natural deduction the sentence $\forall x R_0(x, x)$ from the sentence $\forall x \forall y R_0(x, y)$.

5. Derive the sentence $\neg \forall x P_0(x)$ from the sentence $\forall x \neg P_0(x)$.

6. Derive the sentence $\forall y P_1(y)$ from the sentences $\forall x P_0(x)$ and $\forall x(\neg P_1(x) \rightarrow \neg P_0(x))$.