Logic I Department of Mathematics and Statistics, University of Helsinki Spring 2015 Exercises 8

Read chapters 2.8–2.9 on free and bound variables and definability.

1. (Recap) Show that the formula $\neg \forall x P(x) \rightarrow \exists x \neg P(x)$ is valid.

2. Let A be a formula and \mathcal{M} a model. Show that if s and s' are assignments that agree on every variable occurring free in A, then s satisfies A in \mathcal{M} if and only if s' does. (Hint: Use induction on A.)

3. Which occurrences of variables are free and which are bound in the following formulas? Which formulas are sentences?

(a) $\forall x (P_0(x) \rightarrow P_1(y))$ (b) $\forall x (\forall y \, x Ey \lor \forall z \, y Ez)$ (c) $\forall y (\exists x \, x < y \lor \exists x \, y < x)$ (d) $\forall x (P(x) \rightarrow \exists y R(x, y))$

4. Indicate the set defined by the formula $P_0(x) \wedge \neg P_1(x)$ in the unary structure below.

5. Draw the binary relation defined by the formula

 $d < x \lor y < c$ $R < 0 1) c^{\mathcal{M}} = 0 d^{\mathcal{M}} = 1$

in the structure $\mathcal{M} = (\mathbb{R}, <, 0, 1), c^{\mathcal{M}} = 0, d^{\mathcal{M}} = 1.$

6. An element *a* is definable in a model \mathcal{M} if the set $\{a\}$ is definable in \mathcal{M} . Show that 2 is definable in the model $(\mathbb{N}, <)$, where < is the natural order on the natural numbers.