Logic I

Department of Mathematics and Statistics, University of Helsinki
 Spring 2015

Exercises 8

Read chapters 2.8-2.9 on free and bound variables and definability.

1. (Recap) Show that the formula $\neg \forall x P(x) \rightarrow \exists x \neg P(x)$ is valid.
2. Let A be a formula and \mathcal{M} a model. Show that if s and s^{\prime} are assignments that agree on every variable occurring free in A, then s satisfies A in \mathcal{M} if and only if s^{\prime} does. (Hint: Use induction on A.)
3. Which occurrences of variables are free and which are bound in the following formulas? Which formulas are sentences?
(a) $\forall x\left(P_{0}(x) \rightarrow P_{1}(y)\right)$
(b) $\forall x(\forall y x E y \vee \forall z y E z)$
(c) $\forall y(\exists x x<y \vee \exists x y<x)$
(d) $\forall x(P(x) \rightarrow \exists y R(x, y))$
4. Indicate the set defined by the formula $P_{0}(x) \wedge \neg P_{1}(x)$ in the unary structure below.

5. Draw the binary relation defined by the formula

$$
d<x \vee y<c
$$

in the structure $\mathcal{M}=(\mathbb{R},<, 0,1), c^{\mathcal{M}}=0, d^{\mathcal{M}}=1$.
6. An element a is definable in a model \mathcal{M} if the set $\{a\}$ is definable in \mathcal{M}. Show that 2 is definable in the model $(\mathbb{N},<)$, where $<$ is the natural order on the natural numbers.

