Logic I

Department of Mathematics and Statistics, University of Helsinki
Spring 2015
Exercises 7
Read chapters 2.5-2.7 on predicate logic formulas and validity.

1. Which of the assignments below satisfy the formula $P_{0}(x) \leftrightarrow R(x, y)$ in the model in figure 1? Justify your answer.

	x	y	z
s_{0}	1	2	6
s_{1}	3	4	6
s_{2}	5	6	7

Figure 1. A model
2. Which of the following assignments satisfy the formula $x E y$ in the graph in figure 2? Which satisfy the formula $\exists y x E y$? Justify.

	x	y	z
s_{0}	1	2	3
s_{1}	4	5	6
s_{2}	3	8	7

Figure 2. A graph
3. Give a $\{E\}$-formula that expresses that each vertex in a graph has at least two different neighbours. Two vertices in a graph are neighbours if there is an edge between them.
4. Show that the formulas $\neg \forall x A$ and $\exists x \neg A$ are logically equivalent.
5. Show that the formula $\forall y \exists x A$ is a logical consequence of the formula $\exists x \forall y A$.
6. Show that the formulas $\exists x \forall y R(x, y)$ and $\forall y \exists x R(x, y)$ are not logically equivalent.

