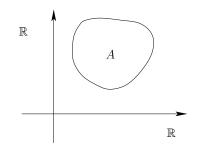

Logic I Department of Mathematics and Statistics, University of Helsinki Spring 2015 Exercises 6

Read chapters 2.2–2.4 on structures and atomic formulas of predicate logic.


1. Let \mathcal{M} be the following structure:

- (a) For which vocabulary is \mathcal{M} a model?
- (b) What is $\operatorname{dom}(\mathcal{M})$?
- (c) Which are the interpretations of the symbols of the vocabulary?

Are the answers unique?

2. Let \mathcal{M}' be the following structure:

- (a) For which vocabulary is \mathcal{M}' a model?
- (b) What is $\operatorname{dom}(\mathcal{M}')$?
- (c) Which are the interpretations of the symbols of the vocabulary?

Are the answers unique?

3. Give an example of a model for the vocabulary L where

(a)
$$L = \{P_0, P_1\},$$

(b) $L = \{R_0, R_1, c_0\},$
(c) $L = \{P_0, P_1, R_0, c_0, c_1, c_2\}.$

4. Let $L = \{P_0, P_1\}$ and $L' = \{P_0, c_0, c_1\}$. Give examples of models \mathcal{M} and \mathcal{M}' , such that all the following hold:

- \mathcal{M} is a model for L and \mathcal{M}' is a model for L',
- dom (\mathcal{M}) = dom(M')• $P_0^{\mathcal{M}'} = P_1^{\mathcal{M}} \neq P_0^{\mathcal{M}}$
- no assignment satisfies the formula $P_0(c_1)$ in the model \mathcal{M}' .

5. Which of the following assignments satisfy the formula $P_0(x)$ in the structure in figure 1? Justify your answer.

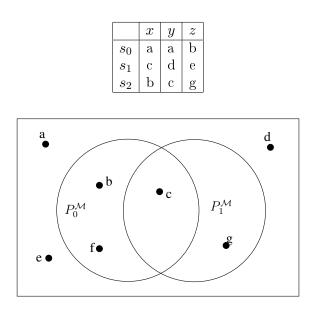


FIGURE 1. A model

6. Which of the following assignments satisfy the formula xEy in the graph in figure 2? Justify your answer.

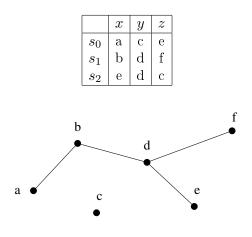


FIGURE 2. A graph