Logic I

Department of Mathematics and Statistics, University of Helsinki
Spring 2015
Exercises 5
Read chapters 1.10-1.11 on the soundness of natural deduction and on semantic trees.

1. (a) How would you prove that a given deduction exists?
(b) How would you prove that a given deduction does not exist?
(c) Prove that $\left\{\left(p_{0} \wedge p_{1}\right) \rightarrow p_{2}\right\} \nvdash\left(p_{0} \rightarrow p_{2}\right) \wedge\left(p_{1} \rightarrow p_{2}\right)$.
(d) Prove that $\left\{\left(p_{0} \rightarrow p_{2}\right) \vee\left(p_{1} \rightarrow p_{2}\right)\right\} \vdash\left(p_{0} \wedge p_{1}\right) \rightarrow p_{2}$.
2. Is it possible to deduce the formula $\left(\left(p_{0} \wedge p_{1}\right) \rightarrow \neg p_{0}\right) \rightarrow\left(\neg p_{0} \vee p_{1}\right)$ with natural deduction? Give a proof for your answer.
3. Is it possible to deduce the formula $\neg p_{0} \vee p_{1}$ from the formula $p_{0} \rightarrow\left(p_{1} \vee \neg p_{0}\right)$ with natural deduction? Give a proof for your answer.
4. Is it possible to deduce the formula $p_{2} \rightarrow \neg\left(p_{0} \wedge p_{1}\right)$ from the formula ($p_{0} \rightarrow$ $\left.\neg p_{2}\right) \vee\left(\neg p_{1} \rightarrow \neg p_{2}\right)$ with natural deduction? Give a proof for your answer.
5. Give a semantic proof for the formulas
(a) $(A \vee(B \rightarrow C)) \rightarrow(B \rightarrow(\neg A \rightarrow C))$ and
(b) $(A \wedge(B \vee C)) \rightarrow((A \wedge B) \vee C)$.
6. Use a semantic tree to find a valuation v for which $v\left(\left(p_{0} \wedge p_{1}\right) \rightarrow p_{2}\right) \rightarrow\left(\left(p_{0} \rightarrow\right.\right.$ $\left.\left.p_{2}\right) \wedge\left(p_{1} \rightarrow p_{2}\right)\right)=1$. Why does this not contradict $1(\mathrm{c})$ above?
