Logic I

Department of Mathematics and Statistics, University of Helsinki
Spring 2015

Exercises 3

Read chapter 1.5 on truth functions in the course material. You can look up conjunctive normal form on the internet.

1. Give a valuation that proves the following claim or prove that no such valuation exists:
(a) The propositional formula $\left(\neg p_{0} \vee p_{1}\right) \leftrightarrow\left(p_{0} \wedge p_{1}\right)$ is satisfiable.
(b) The propositional formula $\left(p_{0} \rightarrow p_{1}\right) \wedge \neg\left(\neg p_{0} \vee p_{1}\right)$ is satisfiable.
(c) The propositional formula $\left(\left(p_{0} \rightarrow p_{1}\right) \rightarrow p_{1}\right) \rightarrow p_{1}$ is falsifiable.
(d) The propositional formula $\left(p_{0} \leftrightarrow p_{1}\right) \leftrightarrow\left(p_{0} \leftrightarrow\left(p_{1} \leftrightarrow p_{0}\right)\right)$ is falsifiable.
2. Come up with two propositional formulas both of which contain at least two propositional symbols and such that they are not logically equivalent but one is the logical consequence of the other.
3. (a) Let A be the propositional formula $p_{0} \wedge \neg p_{0}$. What is the truth function f_{A} ?
(b) What can you say about the truth functions of tautologies, contradictions and contingent formulas?
4. Are the following formulas in
(i) disjunctive normal form?
(ii) conjunctive normal form?
(a) p_{0}
(b) $p_{0} \wedge \neg p_{0}$
(c) $p_{0} \vee \neg p_{0}$
(d) $\left(p_{0} \wedge p_{1}\right) \vee p_{0}$
(e) $\left(\neg p_{0} \vee p_{1}\right) \wedge\left(\neg p_{0} \vee \neg p_{1}\right)$
(f) $p_{0} \wedge p_{1} \wedge p_{2}$
(g) $p_{0} \vee p_{1} \vee p_{2}$
(h) $\left(p_{0} \wedge p_{1}\right) \vee \neg\left(p_{2} \wedge p_{1}\right)$
5. Give a propositional formula A in disjunctive normal form such that the truth function f_{A} it defines is:

x_{0}	x_{1}	x_{2}	$f\left(x_{0}, x_{1}, x_{2}\right)$
1	1	1	1
1	1	0	0
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

6. Prove that $\{\rightarrow\}$ is not a universal set of connectives.

In the following exercise we have a look at natural deduction. To solve the problem a preliminary look at chapter 1.6 should suffice.
7. We examine the "deduction" below:

$$
\frac{A \vee B}{\frac{A}{A \wedge B}} \frac{A \vee B}{B}
$$

(a) Find the errors of the deduction.
(b) Come up with two English sentences A and B and using them explain what happens in the "deduction".

