Logic I

Department of Mathematics and Statistics, University of Helsinki
 Spring 2015
 Exercises 12

Read chapters 2.19-2.22 on n-ary relations, functions and isomorphisms.

1. Deduce the sentence

$$
\forall x \exists y\left(R_{0}\left(F_{0}^{1}(x), x\right) \vee R_{1}(y, x)\right)
$$

from the sentence

$$
\forall x \forall y\left(R_{0}(y, x) \vee R_{1}(y, x)\right)
$$

2. Consider the sentence:

$$
\left(\forall x R_{0}^{3}(x, c, d) \vee \forall y P_{0}(y)\right) \rightarrow \forall x\left(R_{0}^{3}(x, c, d) \vee P_{0}\left(F_{0}^{1}(x)\right)\right) .
$$

Is the sentence valid, contingent of a contradiction? If it is valid or a contradiction, demonstrate this with a suitable deduction or semantic tree. If it is contingent, demonstrate this with models obtained by means of semantic trees.
3. There is an error in the following "deduction" of the sentence $\forall y \exists z \forall x R_{0}^{3}(z, y, x)$ from the sentence $\forall y \forall x R_{0}^{3}\left(F_{0}^{1}(x), y, x\right)$:

$$
\begin{gathered}
\frac{\forall y \forall x R_{0}^{3}\left(F_{0}^{1}(x), y, x\right)}{\forall x R_{0}^{3}\left(F_{0}^{1}(x), y, x\right)} \\
\frac{\exists z \forall x R_{0}^{3}(z, y, x)}{\forall y \exists z} \mathbf{I} \\
\forall x R_{0}^{3}(z, y, x)
\end{gathered} \mathbf{I}
$$

What is the error?
4. Is it possible to deduce the sentence $\exists x_{0} \exists x_{1} R_{0}\left(x_{0}, x_{1}\right)$ from the sentences $\forall x_{0}\left(P_{0}\left(F_{0}^{1}\left(x_{0}\right)\right) \rightarrow\right.$ $R_{0}\left(x_{0}, F_{0}^{1}\left(x_{0}\right)\right)$) and $\exists x_{1} P_{0}\left(x_{1}\right)$ with natural deduction?
5. Which of the following models each with a unary function are isomorphic?

6. Let $L=\left\{P_{0}, c_{0}\right\}$, where P_{0} is a unary predicate symbol and c_{0} is a constant symbol. Further let

$$
\mathcal{M}_{1}=\left(\mathbb{Z}, P_{0}^{\mathcal{M}_{1}}, c_{0}^{\mathcal{M}_{1}}\right)
$$

where

$$
P_{0}^{\mathcal{M}_{1}}=\mathbb{N} \quad \text { and } \quad c_{0}^{\mathcal{M}_{1}}=1
$$

and

$$
\mathcal{M}_{2}=\left(\mathbb{N}, P_{0}^{\mathcal{M}_{2}}, c_{0}^{\mathcal{M}_{2}}\right),
$$

where

$$
P_{0}^{\mathcal{M}_{2}}=\{2 k: k \in \mathbb{N}\} \quad \text { and } \quad c_{0}^{\mathcal{M}_{2}}=1 .
$$

Are \mathcal{M}_{1} and \mathcal{M}_{2} isomorphic?
7. Let $L=\{P, R\}$ be a vocabulary. Let M be the set $\{0,1, \ldots, 9\}$ (the natural numbers from zero to nine). We define two L-structures \mathcal{M}_{1} and \mathcal{M}_{2} as follows: Both have the set M as universe,

$$
P^{\mathcal{M}_{1}}=\{0,1,2,3,4\} \quad \text { and } \quad P^{\mathcal{M}_{2}}=\{5,6,7,8,9\},
$$

and

$$
R^{\mathcal{M}_{1}}=R^{\mathcal{M}_{2}}=\{(2,6),(6,2),(2,8)(8,2),(6,8),(8,6)\}
$$

Are the structures $\mathcal{M}_{1}=\left(M, P^{\mathcal{M}_{1}}, R^{\mathcal{M}_{1}}\right)$ and $\mathcal{M}_{2}=\left(M, P^{\mathcal{M}_{2}}, R^{\mathcal{M}_{2}}\right)$ isomorphic?
8. Let $L=\{P, R\}$. Let \mathcal{M} and \mathcal{M}^{\prime} be two L-structures, with domain $\operatorname{dom}(\mathcal{M})=$ $\operatorname{dom}\left(\mathcal{M}^{\prime}\right)=\{1,2,3,4,5,6,7\}$. Further let

$$
P^{\mathcal{M}}=\{1,2,3,4\} \quad \text { and } \quad R^{\mathcal{M}}=\{(2,5),(5,7),(7,2)\}
$$

and

$$
P^{\mathcal{M}^{\prime}}=\{4,5,6,7\} \quad \text { and } \quad R^{\mathcal{M}^{\prime}}=\{(2,3),(3,4),(4,2)\} .
$$

Are \mathcal{M} and \mathcal{M}^{\prime} isomorphic?

