Logic I

Department of Mathematics and Statistics, University of Helsinki
 Spring 2015
 Exercises 11

Read chapters 2.15-2.16 on axioms and semantic trees.

1. Deduce

$$
\forall x(P(x) \rightarrow \exists y(x=y \wedge P(y)))
$$

2. Deduce from the axioms of order

$$
\forall x_{0} \forall x_{1} \forall x_{2}\left(x_{0}<x_{1} \rightarrow\left(x_{2}<x_{1} \vee x_{0}<x_{2}\right)\right)
$$

3. Deduce from the axioms of graphs

$$
\forall x \forall y(x E y \rightarrow \neg x=y) .
$$

4. Can one deduce $\neg \forall x \neg x E x$ from the graph axioms? And how about $\forall x \exists y \neg x E y$?
5. Use the method of semantic trees to find a model for

$$
\forall x \exists y \forall z\left(R_{0}(x, y) \wedge R_{0}(y, z) \wedge \neg \forall x \forall y R_{0}(x, y)\right) .
$$

Note that there are also other methods to find models, like guessing and testing.
6. Give a semantic proof for

$$
\exists x \forall y\left(R_{0}(x, y) \vee P_{0}(x)\right) \rightarrow \forall y \exists x\left(P_{0}(x) \vee R_{0}(x, y)\right)
$$

7. Give a semantic proof for

$$
\exists x \forall y \neg R_{0}(x, y) \rightarrow \exists x \neg \exists y R_{0}(x, y)
$$

8. Consider the formula:

$$
\left(R_{0}(x, y) \vee \forall x P(x)\right) \rightarrow \forall x\left(R_{0}(x, y) \vee P(x)\right) .
$$

Is the formula valid, contingent of a contradiction? If it is valid or a contradiction, demonstrate this with a suitable deduction or semantic tree. If it is contingent, demonstrate this with models obtained by means of semantic trees.

