Logic I Department of Mathematics and Statistics, University of Helsinki Spring 2015 Exercises 10

Read chapters 2.11–2.15 on natural deduction, soundness and axioms.

1. Derive

 $\forall x \exists y R_0(x,y) \land \forall x \exists y R_1(x,y)$ from

_

 $\forall x \exists y (R_0(x,y) \land R_1(x,y)).$

2. Derive

$$(\forall x P_0(x) \land \exists x \neg P_0(x)).$$

- **3.** Derive $\exists x P_0(x) \to \exists y P_1(y)$ from the formula $\exists y \forall x (P_0(x) \to P_1(y))$.
- 4. Derive $\neg \exists y P_0(y) \rightarrow \neg P_0(c)$.
- 5. Show that the following sentence cannot be derived by natural deduction: $\exists x \neg P_0(x) \rightarrow \neg \exists x P_0(x)$

6. Show that the following sentence cannot be derived by natural deduction: $\forall z (\forall x R_0(x, x) \rightarrow \forall y R_0(z, y))$

7. Show that the following sentence cannot be derived by natural deduction: $\forall x(P_0(x) \rightarrow \forall y P_0(y))$

8. Derive $\exists x P(x) \rightarrow \forall x P(x)$ from the sentence $\forall x \forall y x = y$. Hint: use identity axioms.