Linear Algebra Part II Exercise 5

In exercises 1 and 2, test the sets of matrices for linear dependence in M_{22}. For those that are linearly dependent, express one of the matrices as linear combination of the others.

1. $\left\{\left[\begin{array}{cc}1 & 1 \\ 0 & -1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 3 & 2\end{array}\right]\right\}$
2. $\left\{\left[\begin{array}{ll}-1 & 1 \\ -2 & 2\end{array}\right],\left[\begin{array}{ll}3 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}0 & 2 \\ -3 & 1\end{array}\right],\left[\begin{array}{ll}-1 & 0 \\ -1 & 7\end{array}\right]\right\}$

In exercises 3 and 4, test the sets of polynomials for linear dependence in \mathcal{P}_{2}. For those that are linearly dependent, express one of the polynomials as linear combination of the others.
3. $\left\{1+x, 1+x^{2}, 1-x+x^{2}\right\}$
4. $\left\{x, 2 x-x^{2}, 3 x+2 x^{2}\right\}$
5. Find the coordinate vector of $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ with respect to the basis \mathcal{B} in M_{22}.

$$
\mathcal{B}=\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\right\}
$$

6. Assume $V=\left\{A \in M_{22}: A\right.$ is upper triangular $\}$. Check that V is a vector space. Give a basis for V.
7. Extend $\left\{\left[\begin{array}{ll}0 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]\right\}$ to a basis for M_{22}.
8. Find a basis for $\operatorname{span}\left(\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{cc}-1 & 1 \\ 1 & -1\end{array}\right],\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\right)$ in M_{22}.
9. Extend $\left\{1+x, 1+x+x^{2}\right\}$ to a basis for \mathcal{P}_{2}.
10. Find a basis for $\operatorname{span}\left(1-2 x, 2 x-x^{2}, 1-x^{2}, 1+x^{2}\right)$ in \mathcal{P}_{2}.

In the following exercises determine whether T is a linear transformation. If so, find the kernel and the range of T and a basis for each.
11. $T: M_{22} \rightarrow M_{22}$ defined by $T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{cc}a+b & 0 \\ 0 & c+d\end{array}\right]$
12. $T: M_{22} \rightarrow M_{22}$ defined by $T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{ll}a & 0 \\ 0 & d\end{array}\right]$
13. $T: M_{n n} \rightarrow \mathbb{R}$ defined by $T(A)=a_{11} a_{22} \cdots a_{n n}$
14. $T: M_{n n} \rightarrow \mathbb{R}$ defined by $T(A)=\operatorname{Rank}(A)$

In the following exercises, find either the nullity or the rank of T and then use the rank theorem to find the other.
15. $T: M_{22} \rightarrow \mathbb{R}^{2}$ defined by $T\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=\left[\begin{array}{l}a-b \\ c-d\end{array}\right]$
16. $T: \mathcal{P}_{2} \rightarrow \mathbb{R}^{2}$ defined by $T(p(x))=\left[\begin{array}{l}p(0) \\ p(1)\end{array}\right]$
17. $T: M_{22} \rightarrow M_{22}$ defined by $T(A)=A B$, where $B=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
18. $T: M_{22} \rightarrow M_{22}$ defined by $T(A)=A B-B A$, where $B=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
19. For all of the mentioned linear transformations determine whether they are one-to-one and onto.

