Linear Algebra
Part II, First exercise

1. Find inverse of following matrices (if it exists). For 2×2 matrices use formula and for the rest use Gauss-Jordan method.

- $\left[\begin{array}{ll}4 & 7 \\ 1 & 2\end{array}\right]$
- $\left[\begin{array}{cc}4 & -2 \\ 2 & 0\end{array}\right]$
- $\left[\begin{array}{ll}3 & 4 \\ 6 & 8\end{array}\right]$
- $\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & -2 & -1 \\ 2 & 0 & -1\end{array}\right]$
- $\left[\begin{array}{lll}0 & a & 0 \\ b & 0 & c \\ 0 & d & 0\end{array}\right]$
- $\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ a & b & c & d\end{array}\right]$
- $\left[\begin{array}{cccc}0 & -1 & 1 & 0 \\ 2 & 1 & 0 & 2 \\ 1 & -1 & 3 & 0 \\ 0 & 1 & 1 & -1\end{array}\right]$

2. Prove that for invertible matrix A we have $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.
3. Solve the given matrix equation for X.

- $X A^{2}=A^{-1}$
- $A X B=(B A)^{2}$
- $A B X A^{-1} B^{-1}=I+A$

4. Let $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 0\end{array}\right], B=\left[\begin{array}{ccc}1 & -1 & 0 \\ 1 & 1 & 1 \\ 1 & 2 & -1\end{array}\right], C=\left[\begin{array}{ccc}1 & 2 & -1 \\ 1 & 1 & 1 \\ 2 & 1 & -1\end{array}\right]$ and $D=\left[\begin{array}{ccc}1 & 2 & -1 \\ -3 & -1 & 3 \\ 2 & 1 & -1\end{array}\right]$

Find matrix E that satisfies the given equation. Determine if E is elementary or not. If not write it as product of elementary matrices (if possible)? Also find the inverse of any matrices that you will find.

- $E A=B$
- $E B=A$
- $E A=C$
- $E C=A$
- $E C=D$
- $E D=C$
- $E A=D$
- $E D=A$

5. (a) Prove that if A is invertible and $A B=O$, then $B=O$.
(b) Give a counterexample to show that the result in previous part may fail if A is not invertible.
6. (a) Prove that if A is invertible and $B A=C A$, then $B=C$.
(b) Give a counterexample to show that the result in previous part may fail if A is not invertible.
7. A square matrix A is called idempotent if $A^{2}=A$.
(a) Find three idempotent 2×2 matrices.
(b) Prove that the only invertible idempotent $n \times n$ matrix is identity matrix.
8. Prove that if a symmetric matix is invertible, then its inverse is symmetric also.
9. Prove that if A and B are square matices and $A B$ is invertible, then both A and B are invertible.

Partitioning large matrices can sometimes make their inverses easier to compute, particularly if the blocks have a nice form. In next exercises verify by block multiplication that the inverse of a matrix, if partitioned as shown, is as claimed. (Assume that all inverses exist as needed.)
10. $\left[\begin{array}{ll}A & B \\ O & D\end{array}\right]^{-1}=\left[\begin{array}{cc}A^{-1} & -A^{-1} B D^{-1} \\ O & D^{-1}\end{array}\right]$
11. $\left[\begin{array}{cc}O & B \\ C & I\end{array}\right]^{-1}=\left[\begin{array}{cc}-(B C)^{-1} & (B C)^{-1} B \\ C(B C)^{-1} & I-C(B C)^{-1} B\end{array}\right]$
12. $\left.\begin{array}{ll}A & B \\ C & D\end{array}\right]^{-1}=\left[\begin{array}{ll}P & Q \\ R & S\end{array}\right]$, where $P=\left(A-B D^{-1} C\right)^{-1}, Q=-P B D^{-1}, R=-D^{-1} C P$ and

Monday 16 March we go thorugh almost all material form section 3.3 (The inverse of a Matrix) just a couple of examples left. We will jump to section 3.5 (Subspaces, Basis, etc.) on Friday after covering some examples from Monday.

