Linear Algebra Part II Exercise 3

1. Prove that the following transfomations are linear. (Use the defenition or the following remark)

- $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x+y \\ x-y\end{array}\right]$
- $T\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}x-y+z \\ 2 x+y-3 z\end{array}\right]$

2. Give a counterexample to show that the following transformations are not linear.

- $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}y \\ x^{2}\end{array}\right]$
- $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}|x| \\ |y|\end{array}\right]$
- $T\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}x+1 \\ y-1\end{array}\right]$

3. Prove that the following transformations are linear by showing that they are matrix transformations. Find the standard matrix of each transformation. (all from \mathbb{R}^{2})

- R rotates a vector 45 degree counterclockwise about the origin.
- P projects a vector onto the line $x=y$.
- C converts the cordinate of a vector with respect basis $B_{1}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$ to the cordinate of same vector with respect to $B_{2}=\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{c}2 \\ -1\end{array}\right]\right\}$.

4. Show that $[S] o[T]=[S][T]$ for following transformations.

- $T\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}x_{1}-x_{2} \\ x_{1}+x_{2}\end{array}\right], S\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{l}2 y_{1} \\ -y_{2}\end{array}\right]$
- $T\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}x_{1}+x_{2}-x_{3} \\ 2 x_{1}-x_{2}+x_{3}\end{array}\right], S\left[\begin{array}{l}y_{1} \\ y_{2}\end{array}\right]=\left[\begin{array}{c}y_{1}-y_{2} \\ y_{1}+y_{2} \\ -y_{1}+y_{2}\end{array}\right]$

5. Prove that the range of a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is the column space of it's matrix $[T]$.
6. Show that v is an eigenvector of A and find the corresponding eigenvalue.

- $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right], v=\left[\begin{array}{c}3 \\ -3\end{array}\right]$
- $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & 1 & -2 \\ 1 & 0 & 1\end{array}\right], v=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$

7. Show that λ is an eigenvalue of A and find a corresponding eigenvector.

- $A=\left[\begin{array}{cc}0 & 4 \\ -1 & 5\end{array}\right], \lambda=1$
- $A=\left[\begin{array}{ccc}1 & 0 & 2 \\ -1 & 1 & 1 \\ 2 & 0 & 1\end{array}\right], \lambda=-1$

8. Show that the eigenvalues of the upper tirangular matrix $A=\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ are $\lambda=a$ and $\lambda=d$. Find the corresponding eigenspaces.
9. Find all eigenvalues of the matrix A over indicated \mathbb{Z}_{p} and \mathbb{R}.

- $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 2\end{array}\right]$ over \mathbb{Z}_{3}
- $A=\left[\begin{array}{ll}1 & 4 \\ 4 & 0\end{array}\right]$ over \mathbb{Z}_{5}

