Linear Algebra Part II Exercise 3

1. Prove that the following transfomations are linear. (Use the defenition or the following remark)
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2. Give a counterexample to show that the following transformations are not linear.
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3. Prove that the following transformations are linear by showing that they are matrix transformations.
Find the standard matrix of each transformation. (all from R?)

e Rrotates a vector 45 degree counterclockwise about the origin.

e P projects a vector onto the line x = y.
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e ( converts the cordinate of a vector with respect basis B, = -1 } to the cordinate

of same vector with respect to By = { {ﬂ , {_21} }

4. Show that [S]o[T"] = [S][T] for following transformations.
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5. Prove that the range of a linear transformation 7" : R™ — R™ is the column space of it’s matrix [17].

6. Show that v is an eigenvector of A and find the corresponding eigenvalue.
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7. Show that )\ is an eigenvalue of A and find a corresponding eigenvector.
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8. Show that the eigenvalues of the upper tirangular matrix A = {8 d] are A = a and A\ = d. Find

the corresponding eigenspaces.

9. Find all eigenvalues of the matrix A over indicated Z, and R.

10
o A= L 2] over Zs

1 4
o A= [4 0] over Zs



