Linear Algebra

Sixth exercise:

1. Prove that if the columns of B are linearly dependent, then so are the columns of $A B$.
2. Prove that if the rows of A are linearly dependent, then so are the rows of $A B$.
3. Is the following sentence true? If yes prove it, else justify your answer and give an example.
"If the columns of $A B$ are linearly dependent, then so are the columns of B."
4. Is the following sentence true? If yes prove it, else justify your answer and give an example.
"If the columns of B be linearly independent, then so are the columns of $A B$."
Note: You can ask the same questions about the rows of A and $A B$ or even go further to rows of A and columns of $A B$ or columns of A and columns/rows of $A B$.
5. Can you find the requirement (necassary and sufficient condition) for $A B$ to have linearly independent columns? What about rows?
In exercises 6 to 9 let $A=\left[\begin{array}{ccc}1 & 0 & -2 \\ -3 & 1 & 1 \\ 2 & 0 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}2 & 3 & 0 \\ 1 & -1 & 1 \\ -1 & 6 & 4\end{array}\right]$.
6. Compute $A B$.
7. Write each column of $A B$ as linear combination of columns of B. (hint: Using matrix-column representation will make it easy)
8. Write each row of $A B$ as linear combination of rows of A. (hint: Using row-matrix representation will make it easy)
9. Compute the outer product expansion of $A B$.
10. Let $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & 0 \\ 1 & 1\end{array}\right]$ and solve the following equations for X.

- $X-2 A+3 B=O$
- $2(A-B+X)=3(X-A)$

11. Write $B=\left[\begin{array}{lll}3 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]$ as linear combination of $A_{1}=\left[\begin{array}{ccc}1 & 0 & -1 \\ 0 & 1 & 0\end{array}\right], A_{2}=\left[\begin{array}{ccc}-1 & 2 & 0 \\ 0 & 1 & 0\end{array}\right]$ and $A_{3}=$ $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 0 & 0\end{array}\right]$, if possible.
12. Determine if following matrices are linearly independent.

- $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right],\left[\begin{array}{ll}4 & 3 \\ 2 & 1\end{array}\right]$
- $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right],\left[\begin{array}{cc}2 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$

13. If $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ and $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$. Find conditions on a, b, c, d such that $A B=B A$.
14. Find conditions on a, b, c, d such that $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ commute with both $\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$.
15. Find conditions on a, b, c, d such that $B=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ commute with every 2×2 matrix.
