Linear Algebra

Second exercise:

In exercise 1, 2 and 3 find $\mathbf{u}.\mathbf{v}$ and $\|\mathbf{u}\|$. Also give a unit vector in the direction of \mathbf{u} .

1.
$$\mathbf{u} = \begin{bmatrix} -1\\ 2 \end{bmatrix}$$
, $\mathbf{v} = \begin{bmatrix} 3\\ 1 \end{bmatrix}$
2. $\mathbf{u} = \begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2\\ 3\\ 1 \end{bmatrix}$
3. $\mathbf{u} = \begin{bmatrix} 1, \sqrt{2}, \sqrt{3}, 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 4, -\sqrt{2}, 0, -5 \end{bmatrix}$

4. If u, v and w are vectors in \mathbb{R}^n , $n \ge 2$ and c is a scalar, explain why the following expressions make no sense:

(a) $\|\mathbf{u}.\mathbf{v}\|$ (b) $\mathbf{u}.\mathbf{v} + \mathbf{w}$ (c) $\mathbf{u}.(\mathbf{v}.\mathbf{w})$ (d) $c.(\mathbf{u} + \mathbf{v})$

Find the angle between \mathbf{u} and \mathbf{v} in next three exercise.

	2	1
5. $\mathbf{u} = \begin{bmatrix} 3 \\ 0 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$	$\mathbf{6. u} = \begin{bmatrix} 2\\ -1\\ 1 \end{bmatrix}$, $v = -2 $
		$\lfloor -1 \rfloor$

7.
$$\mathbf{u} = [4, 3, -1]$$
, $\mathbf{v} = [1, -1, 1]$

8. Let A = (1, 1, -1), B = (-3, 2, -2), C = (2, 2, -4). Prove that $\triangle ABC$ is a right-angled tirangle.

In exercise 9 - 12, find the projection of \mathbf{v} onto \mathbf{u} . Draw a sketch in exercise 9 and 10. 9. $\mathbf{u} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}$ 10. $\mathbf{u} = \begin{bmatrix} \frac{3}{5} \\ -\frac{4}{5} \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ 11. $\mathbf{u} = \begin{bmatrix} \frac{2}{3}, -\frac{2}{3}, -\frac{1}{3} \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2, -2, 2 \end{bmatrix}$ 12. $\mathbf{u} = \begin{bmatrix} 1, -1, 1, -1 \end{bmatrix}$, $\mathbf{v} = \begin{bmatrix} 2, -3, -1, -2 \end{bmatrix}$

13. Show that there are no vectors \mathbf{u} and \mathbf{v} such that $\|\mathbf{u}\| = 1$, $\|\mathbf{v}\| = 2$ and $\mathbf{u} \cdot \mathbf{v} = 3$.

14. (a) Prove that $\operatorname{proj}_{\mathbf{u}}(\operatorname{proj}_{\mathbf{u}}(\mathbf{v})) = \operatorname{proj}_{\mathbf{u}}(\mathbf{v})$. (b) Prove that $\operatorname{proj}_{\mathbf{u}}(\mathbf{v} - \operatorname{proj}_{\mathbf{u}}(\mathbf{v})) = 0$. (c) Explain (a) and (b) geometrically.