Linear Algebra
Fifth exercise:

In the following exercises determine if the vector v is a linear combination of the remain-
ing vectors.
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In next two exercises determine if the vector b is in the span of the columns of the matrix
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In next two exercises determine if the set of vectors are linearly independent. For any set
that are linearly dependent, find a dependence relationship among the vectors.
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13. Let A = 3 O,B: 42 1,0: 3 4|,D = 0 -3
-1 5 0 2 3 - 6

E=[4 2|,F

[_21} . Compute the indicated matrices (if possible).

A+2D,AB,B—-C,BD, BF, EB.

14. Given an example of a nonzero 2 x 2 matrix A such that AA = O. (O is zero matrix)

15. Let A = E Zl%} . Find 2 x 2 matrices B and C' such that AB = AC but B # C.



