Linear Algebra
Fifth exercise:
In the following exercises determine if the vector v is a linear combination of the remaining vectors.

1. $\mathbf{v}=\left[\begin{array}{l}1 \\ 2\end{array}\right], \mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}1 \\ -1\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}2 \\ -1\end{array}\right]$
2. $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \mathbf{u}_{\mathbf{1}}=\left[\begin{array}{c}4 \\ -2\end{array}\right], \mathbf{u}_{\mathbf{2}}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$
3. $\mathbf{v}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \mathbf{u}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$
4. $\mathbf{v}=\left[\begin{array}{c}3 \\ 2 \\ -1\end{array}\right], \mathbf{u}_{\mathbf{1}}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right], \mathbf{u}_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$

In next two exercises determine if the vector \mathbf{b} is in the span of the columns of the matrix A.
5. $\mathbf{A}=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right], \mathbf{b}=\left[\begin{array}{l}5 \\ 6\end{array}\right]$
6. $\mathbf{A}=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9\end{array}\right], \mathbf{b}=\left[\begin{array}{l}10 \\ 11 \\ 12\end{array}\right]$
7. Show that $\mathbb{R}^{2}=\operatorname{Span}\left(\left[\begin{array}{c}3 \\ -2\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$
8. Show that $\mathbb{R}^{3}=\operatorname{Span}\left(\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}-1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{c}2 \\ 1 \\ -1\end{array}\right]\right)$

In next two exercises determine if the set of vectors are linearly independent. For any set that are linearly dependent, find a dependence relationship among the vectors.
9. $\left[\begin{array}{c}2 \\ -1 \\ 3\end{array}\right],\left[\begin{array}{l}1 \\ 4 \\ 4\end{array}\right]$
10. $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$
11. $\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]$
12. $\left[\begin{array}{c}-2 \\ 3 \\ 7\end{array}\right],\left[\begin{array}{c}4 \\ -1 \\ 5\end{array}\right],\left[\begin{array}{l}3 \\ 1 \\ 3\end{array}\right],\left[\begin{array}{l}5 \\ 0 \\ 2\end{array}\right]$
13. Let $A=\left[\begin{array}{cc}3 & 0 \\ -1 & 5\end{array}\right], B=\left[\begin{array}{ccc}4 & -2 & 1 \\ 0 & 2 & 3\end{array}\right], C=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right], D=\left[\begin{array}{cc}0 & -3 \\ -2 & 1\end{array}\right]$
$E=\left[\begin{array}{ll}4 & 2\end{array}\right], F=\left[\begin{array}{c}-1 \\ 2\end{array}\right]$. Compute the indicated matrices (if possible).
$A+2 D, A B, B-C, B D, B F, E B$.
14. Given an example of a nonzero 2×2 matrix A such that $A A=O$. (O is zero matrix)
15. Let $A=\left[\begin{array}{ll}2 & 1 \\ 6 & 3\end{array}\right]$. Find 2×2 matrices B and C such that $A B=A C$ but $B \neq C$.

