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INTRODUCTION
In this project work we have a linear inverse problem

m = Af + ε, (1)

where m ∈ Rk is the measurement data, f ∈ Rn is the one we want to
recover and A is the measurement matrix. To solve f we will be using
total variation regularization.

The tomographic data will be measured by ourselves and we are going
to use a motorcycle toy from a Kinder-surprise as an object of imag-
ing. The resolution of the data will be quite big and we will use only
a few angles of the measured data. Therefore we will be using the
optimization method of Barzilai and Borwein. This is a matrix-free
implementation of total variation regularization.

In total variation regularization we decided to use a resolution-based
choice of regularization parameter.

METHODS AND MATERIALS

Total variation regularization
The idea of total variation regularization is to find a vector f ∈ Rn,
which minimizes the expression

‖Af −m‖22 + α‖Lf‖1, (2)

where L is a finite difference matrix and α > 0 is a regularization pa-
rameter. In this project we have a two-dimensional case and therefore
f ∈ Rn×n. To use the formula (2) we treat the matrix f as a vector
f ∈ Rn2. Now we minimize the expression

‖Af −m‖22 + α‖LHf‖1 + α‖LV f‖1, (3)

where LH and LV are horizontal and vertical difference matrices and
α > 0 is a regularization parameter.

For example in the case f ∈ R3×3 implies f ∈ R9. Now the horizontal
difference matrix is

LH =
1

9



−1 0 0 1 0 0 0 0 0

0 0 0 −1 0 0 1 0 0

1 0 0 0 0 0 −1 0 0

0 −1 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 1 0

0 1 0 0 0 0 0 −1 0

0 0 −1 0 0 1 0 0 0

0 0 0 0 0 −1 0 0 1

0 0 1 0 0 0 0 0 −1


and the vertical difference matrix is

LV =
1

9



−1 1 0 0 0 0 0 0 0

0 −1 1 0 0 0 0 0 0

1 0 −1 0 0 0 0 0 0

0 0 0 −1 1 0 0 0 0

0 0 0 0 −1 1 0 0 0

0 0 0 1 0 −1 0 0 0

0 0 0 0 0 0 −1 1 0

0 0 0 0 0 0 0 −1 1

0 0 0 0 0 0 1 0 −1


.

To solve the problem (3), we use the gradient descent minimization
method of Barzilai and Borwein. This approach is good for large-scale
implementations. Let’s denote an objective function G : Rn2 → R

G(f) = ‖Af −m‖22 + α‖LHf‖1 + α‖LV f‖1

= ‖Af −m‖22 + α

n∑
i,j=1

|fi,j − fi,j−1| + α

n∑
i,j=1

|fi,j − fi−1,j|,

where indices i and j denote rows and columns, respectively from the
matrix f ∈ Rn×n. We use the periodic boundary conditions. Because
G is not continuously differentiable, we replace the absolute value
function |t| by

|t|β =
√
t2 + β,

where β > 0 is very small. We denote the modified function G by Gβ.

Because the method of Barzilai and Borwein is gradient-based, we
calculate the gradient of the function Gβ:

∇Gβ(f) = ∇‖Af −m‖22

+ α∇

 n∑
i,j=1

|fi,j − fi,j−1|β +
n∑

i,j=1

|fi,j − fi−1,j|β

 .

The gradient of the first term is

∇‖Af −m‖22 = 2ATAf − 2ATm

and the second term consists of the components

∂

∂fk,l

 n∑
i,j=1

|fi,j − fi,j−1|β +
n∑

i,j=1

|fi,j − fi−1,j|β


=

n∑
i,j=1

∂

∂fk,l

(√
(fi,j − fi,j−1)2 + β +

√
(fi,j − fi−1,j)2 + β

)
=

fk,l − fk,l−1√
(fk,l − fk,l−1)2 + β

− fk,l+1 − fk,l√
(fk,l+1 − fk,l)2 + β

+
fk,l − fk−1,l√

(fk,l − fk−1,l)2 + β
− fk+1,l − fk,l√

(fk+1,l − fk,l)2 + β
.

The Barzilai and Borwein optimization strategy is an iterative method
where f (1) is the initial guess and the next step is calculated by

f (r+1) = f (r) − δr∇Gβ(f
(r)), (4)

where δr is the steplength parameter. Let’s denote yr = f (r) − f (r−1)

and gr = ∇Gβ(f
(r))−∇Gβ(f

(r−1)) and now the steplength parameter
is defined by

δr =
yTr yr
yTr gr

.

All of the theory above is based on the book [1].

The choice of the regularization parameter
There are many different methods to choose the regularization param-
eter α and to this project work we chose the resolution-based choice
of total variation regularization parameter. In this method we calculate
reconstructions for a few different resolutions and discrete TV norms
for them. The optimal α will be the smallest one which gives the norm
values very close to each other. Let’s define the TV norm by

‖f‖TV = ‖LHf‖1 + ‖LV f‖1, (5)

where LH and LV are horizontal and vertical difference matrices, re-
spectively, as in (3) and we use periodic boundary conditions. This
method is introduced in the article [2].

The measurement data
For this project work we chose a motorcycle toy from a Kinder-surp-
rise, shown in Figure 1, to be the object from which we took the X-ray
images. To get the measurement data we used the fan-beam geometry
with 180 angles. To simplify the problem we consider that the beam
was parallel and to have sparse data we chose to use only 30 angles of
the measured 180.

Figure 1: A photo of the object to image.

We placed the motorcycle vertically and we took the cross-section of
the bike at the rear wheel. In Figure 2 is the first X-ray image and the
red line indicates the chosen cross-section.

Figure 2: The chosen cross-section for the reconstruction.

RESULTS
We used the resolution-based choice of regularization parameter with
two different resolutions: 32 × 32 and 44 × 44. For these resolutions
we computed reconstructions with Barzilai and Borwein method with
50 different regularization parameters α from the interval [0.1, 20]. In
the Barzilai and Borwein method we noticed that 2000 iterations is
enough so we used it as a number of iterations.

We computed TV norms for the previously mentioned reconstructions
with the formula (5). For every α we computed the difference of the
two TV norms calculated from the mentioned resolutions. The results
can be seen in Figure 3 where the TV norm differences are as a func-
tion of α.
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Figure 3: A function to choose α.

From the Figure 3 we can see that the best choice for regularization
parameter α is approximately 13. With this parameter choice we com-
puted the reconstruction with original sparse data. The final recon-
struction is the size of 494× 494 pixels and it can be seen in the Figure
4.

Figure 4: The reconstruction using total variation regularization.

We computed also the reconstruction for the data with full 180 angles
using Matlab’s routine iradon.m. This reconstruction is shown in
Figure 5. We computed this reconstruction to have something to com-
pare the results of total variation regularization. The reconstruction
images were normalized to the same scale and then the relative norm
difference for these two reconstructions got the value 17, 0%.

Figure 5: The full-angle reconstruction.

DISCUSSION
From the Figure 4 we see that the result is quite good. The structure of
reconstruction is clear and the shape is very recognizable. The edges
look quite sharp and we can distinguish the bottom part of the fig-
ure is separate from the other structure. This part of the figure is the
rear wheel of the motorcycle and in this cross-section it is not even
supposed to be attached to the other parts.

In the reconstruction there is a visible amount of noise in the back-
ground and also a little in the motorcycle. The background should be
black but instead there are some grey spots in it because of the noise.
Not every little detail can be seen in the reconstruction. For example
in the top of the image there should be a visible joint which can be
seen in Figure 5. The lack of details results from having data only
from 30 angles.

From the reconstruction we can see that there is on the right side a
shape made of different material than the other parts of the motorcycle.
This part is made of material that attenuates X-rays more than the other
parts and therefore it can be seen lighter in the Figure 4.

In Figure 5 is shown the full-angle reconstruction using Matlab’s rou-
tine iradon.m. This reconstruction is better than the sparse one be-
cause we are using all 180 angles, but it is not perfect either. Also in
this image there is some amount of noise and because of it the back-
ground for example is not as smooth as it could be.

These two reconstructions, the full-angle reconstruction and the sparse
reconstruction, are after all quite similar having only 17.0% norm dif-
ference. As a conclusion from the results of this project work we can
say that the total variation regularization with Barzilai and Borwein
optimization method using the resolution-based regularization param-
eter choice gives good and usable results even with only few angles.
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