Inverse Problems Project: Pistachio

INTRODUCTION

In this poster we present sparse tomography reconstructions of
a pistachio nut.

In a sparse-angle imaging problem like we consider in this
study, projections are available only from a limited amount of
projection angles. Creating a two-dimensional reconstruction
image from such limited data is a non-trivial inversion prob-
lem, and thus warrants use of regularized inversion methods
like the Total Variation regularization method used here. Reg-
ularization parameter o was chosen automatically by a method
based on comparing TV norms of reconstructions with differ-
ent values of .

The x-ray imaging of the test object was done in the Industrial
Mathematics Laboratory at University of Helsinki with the as-
sistance of Alexander Meaney.

MATERIALS AND METHODS

Linear Inverse Problem Model and X-ray imaging

Generally this kind of imaging problem can be modelled as
m = Af + ¢, (D)

where m 1s vector of measurement data, f 1s finite-dimensional
approximation vector modeling the target function f we want
to reconstruct, ¢ is random noise and matrix A is a linear op-
erator. In a tomographic problem, the attenuation function f
describes a two-dimensional image and A the X-ray projection
process (the Radon transform).

The X-ray source used was a 50 kV molybdenum tube (oper-
ated at current of 1 mA) manufactured by Oxford Instruments.
Projections were taken from 0° to 179° with angular intervals
of 1° and exposure time of 1000 ms.

Most X-ray sources, like the one used in this project, produce
a multispectral beam (so-called 'fan-beam’), and line integrals
of f may differ depending on the propagation direction of the
X-ray along the line. However, in this study we use parallel-
beam geometry model to simplify computations. Assuming
the target 1s very small and placed close to the detector, we
can approximate parallel-beam case even with a fan-beam X-
ray source.

To obtain the sparse angle data, instead of doing real sparse
angle imaging, the object was imagined from large number of
angles, and small number of them were picked for reconstruc-
tion to simulate sparse-angle imagined data.

For an interesting and suitably small imaging target for the
study, we chose a pistachio nut (Figure [1)).

Figure 1: Picture of the target ready for imaging. Size of nut: 1,9 cm long
and 1,4 cm wide.

Total variation regularization

Following [5, 4], we define total variation for two-dimensional
images as follows:

Definition 1 (Total variation). Let | be a real-valued differen-
tiable function defined on bounded open set ) C R? Total
variation of f can be defined as

TV(f) = /Q V£ (2)|de. ©)

Replacing TV with its discretized approximation, the total
variation regularized solution 7, (m) to inverse problem |1/ can
now be defined as

T.,(m) = arg min {HAZ —m|?+a ]|Lz||1} NG,

z€R"
where L is a discretized differential operator and ||-||, ¢*-norm.
From equation ([2) we see that minimization of 7'V should re-

sult in a solution with less oscillations characterized by abso-
lute value of the gradient V f(x).

In the numerical implementation, the objective function to be
minimized becomes

G(f) = || Af — m”§+azZ|fi,j_fi—1,j|‘|‘|fi,j_fz',j—1|a (4)

i=1 j=1

where f is our two-dimensional image.
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Numerical implementation with Barzilai-Borwein method

Minimizing the objective function (4)) is a numerical optimiza-
tion problem. For problems where the objective function has a
known, continuous gradient that can be efficiently computed,
many fast gradient-based optimization algorithms are avail-
able, one of them the Barzilai-Borwein (B-B) method.

However, GG 1sn’t continuously differentiable, so to use Barzilai-

Borwein, we approximate the absolute value function |-| in (4)
by |-[s,

lz| = |z|s = V= + [, where 8 > 0 small,

which naturally has a continuous derivative, and so in numeri-
cal calculations we replace (4) with an approximation G 3(f) :~
G ). The gradient VGg(f) can now be analytically solved
(see [4, Eq 6.13 — 6.14]),

VGs(f) =247 Af — 24 " m+
1/2 +

fi1—f;
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The B-B method (presented in [1]) is a version of the famous
iterative gradient descent or steepest descent algorithm, and it
can be described as follows:

After some initial guess (Y, each iteration step f(" is deter-
mined from the previous step

fo = f = 5,9 Gs(fM), (6)
where the steplength parameter 9,, is (in B-B method) given
by

T
Yn Yn
571 = = ) (7)
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where g, = £ — F=1 and g, = VG(f) — VGy( fD).
Automatic regularization parameter choice

In any implementation of total variation regularization, an im-
portant question is how to choose the regularization parame-
ter . In this project, we tested an automatic TV norm based
method inspired by the sparsity S-curve method proposed in [4,
Section 6.3] and [2, 3].

Our 'measurement of sparsity’ is simply the TV norm of the
(reconstructed) slice image: we noticed that reconstructions
with very small a have quite much ’variation’ measured by
TV (m), and likewise with very large ., 7'V (m) is small; more-
over, curve seems to decrease monotonically (at least in a fea-
sible range). Assuming we have a priori knowledge of the de-
sired level of total variation in a good reconstruction, we can
find a good guess for a with an interpolation method similar
to the ’S-curve’:

We compute the reconstructions and their TV norms for mul-
tiple but computationally feasible number & of discrete points
ai, . .., ay 1n some range. Our automatic guess 1s the point o
that has an interpolated (piecewise cubic interpolation) value
nearest to the a priori known TV value. (See Figure {4])

To create a priori data similar enough to sparse B-B recon-
structions, we used full-angle reconstruction obtained by sim-
ple filtered back-projection (FBP) with some noise reduction
in addition basic X-ray image preprocessing: Reconstruction
image was first filtered using MATLAB’s wiener2.m -routine,
and then still noisy background was averaged. See Figures
for resulting a priori data.

The FBP couldn’t itself be used because full angle FBP (Fig-
ure [2)) reconstructed more imaging noise (thus variation) than

Figure 2: Full-angle reconstruction of the middle part of the target using
Filtered Back-projection.

Figure 3: a priori data from middle part of the target.

RESULTS

We reconstructed horizontal slices of the target pistachio at
two different heigths: from the middle and "top’ level of a nut
(in a ’standing position’, as in Figure [I)). The sparse-angle
reconstructions were done with sets of both 30 and 15 even-
spaced angles (angles 0°,6°,...,174°and 0°, 12°,. .., 168°, re-
spectively). See Figures [5/6] for the resulting reconstructions.
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Figure 4: Interpolated (middle section of nut) automatic choice a; is
4.4186.

B-BE TV reconstruction, angles 15, alpha =0.81156

Figure 5: Reconstruction of the middle part by using 15 angles.

E-EB Tt reconstruction: 30 angles, alpha = 4 4156

Figure 6: Reconstruction of the middle part by using 30 angles.

DISCUSSION

Reconstructions with both 30 and 15 angles turned out sur-
prisingly good, 30 slightly but noticifiably better. TV man-
aged to reconstruct even the small details clear and sharp,
but in the 15 angles version some artifacts were shown.

Even though results are not fully reliable since our a priori
data was computed from the same full-angle data set than
actual reconstructions, this study gives a good demonstration
of TV as a tomography reconstruction method and points out
TV’s power to create sharp, well-detailed reconstructions.
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