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1 Haar wavelet transform in 1D

1.1 The Haar transform for functions

Consider real-valued functions defined on the interval [0, 1]. There are two especially
important functions, namely the scaling function ϕ(x) and the mother wavelet ψ(x),
defined as follows:

ϕ(x) ≡ 1, ψ(x) =

{
1, for 0 ≤ x < 1/2,
−1 for 1/2 ≤ x ≤ 1.

Also, let us define wavelets as scaled and translated versions of the mother wavelet:

ψjk(x) := 2j/2ψ(2jx− k) for j ≥ 0 and 0 ≤ k ≤ 2j − 1.

Let f, g : [0, 1]→ R. Define the inner product between f and g by

〈f, g〉 :=
∫ 1

0

f(x)g(x) dx. (1)

Then we have orthogonality:

〈ψjk, ψj′k′〉 =
{

1 if j = j′ and k = k′,
0 otherwise.

Define the “detail” wavelet coefficients of a function f as follows:

djk := 〈f, ψjk〉, for j ≥ 0 and 0 ≤ k ≤ 2j − 1, (2)

and the average coefficient as
c0 := 〈f, ϕ〉. (3)

Then we can express f in terms of wavelets like this:

f(x) = c0ϕ(x) +
∞∑
j=0

2j−1∑
k=0

djkψjk. (4)
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1.2 The Haar transform for discrete signals

Let n = 2m. Given a function f : [0, 1] → R, denote its samples at n points as
follows:

fν := f(xν), with xν =
ν − 1

n
for ν = 1, . . . , n. (5)

We will use the vector notation f = [f1, . . . , fn]
T . Then the wavelet transform can

be implemented as a matrix-vector product w = W f .
Let us illustrate the structure of the vector w by a small example. Take n = 8.

Then
w = [d20, d21, d22, d23; d10, d11; d00; c0]

T = W f . (6)

1.3 Besov space norms

The general Besov space norm can be written as [7]

‖f‖Bs
pq
:=

|c0|q + ∞∑
j=0

2jq(s+
1
2
− 1

p
)
( 2j−1∑
k=0

|dj,k|p
) q

p

 1
q

,

where s ∈ R and 1 ≤ p, q < ∞. Actually the parameter s has to satisfy s < r
where r is the regularity of the mother wavelet. However, we will not care about
this below.

Our main interest here will be the space B1
11 in dimension 1, whose norm is

‖f‖B1
11
= |c0|+

∞∑
j=0

2j−1∑
k=0

2j/2|dj,k|. (7)

Now the Haar basis is not smooth enough for the theory to hold, but we do not care.
In the discrete case (7) takes the form

‖f‖B1
11
= ‖Bw‖1. (8)

Let us illustrate the structure of the weight matrix B using example (6). It is then

B =



2 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0
0 0 2 0 0 0 0 0
0 0 0 2 0 0 0 0

0 0 0 0
√
2 0 0 0

0 0 0 0 0
√
2 0 0

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
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2 The minimization problem

2.1 Wavelet-based approach

Consider the minimization problem

f̃ := arg min
f∈Rn

{
‖Af −m‖22 + α′‖f‖B1

11

}
, (9)

where ‖ · ‖B1
11

denotes Besov space norm. This is interesting since the Besov space
B1

11 is related to the Total Variation space but has different properties. See [2, 5, 4, 3]
and [6, Chapter 7].

Roughly speaking, we can determine the wavelet coefficient vector w̃ = W f̃ by
solving this minimization problem:

w̃ := arg min
w∈Rn

{
‖AW Tw −m‖22 + α‖Bw‖1

}
, (10)

where B is a diagonal weight matrix.
We do not discuss the relationship between the regularization parameters α > 0

and α′ > 0 further in this short note; since there are many equivalent norms for the
space B1

11, it is not straightforward how α and α′ should be related for w̃ = W f̃ to
hold.

See [1] for more information on wavelets.

2.2 Quadratic reformulation

We want to determine numerically the vector w̃ ∈ Rn that solves (10). We write
the vector w ∈ Rn in the form

Bw = v+ − v−,

where v± are nonnegative vectors: v± ∈ Rn
+, or (v±)j ≥ 0 for all j = 1, . . . , n. Now

minimizing (10) is equivalent to minimizing

‖AW Tw‖22 − 2mTAW Tw + α1Tv+ + α1Tv−,

where 1 is the vector with all elements equal to one: 1 =
[
1 1 · · · 1

]T ∈ Rn,
and the minimization is taken over y ∈ R3n defined by

y =

 w
v+

v−

 , where
w ∈ Rn

v+ ∈ Rn
+

v− ∈ Rn
+

.

Note the identity ‖AW Tw‖22 = wTWATAW Tw and write

H =

 2WATAW T 0 0
0 0 0
0 0 0

 , h =

 −2WATm
α1
α1

 .
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We then have the quadratic optimization problem in standard form

argmin
y

{
1

2
yTHy + hTy

}
(11)

with the constraints  y1
...
yn

 =

 yn+1
...
y2n

−
 y2n+1

...
y3n

 (12)

and
yj ≥ 0 for j = n+ 1, . . . , 3n. (13)
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