Wavelet-based Besov space penalty regularization

Samuli Siltanen February 2015.

1 Haar wavelet transform in 1D

1.1 The Haar transform for functions

Consider real-valued functions defined on the interval $[0,1]$. There are two especially important functions, namely the scaling function $\varphi(x)$ and the mother wavelet $\psi(x)$, defined as follows:

$$
\varphi(x) \equiv 1, \quad \psi(x)=\left\{\begin{aligned}
1, & \text { for } 0 \leq x<1 / 2 \\
-1 & \text { for } 1 / 2 \leq x \leq 1
\end{aligned}\right.
$$

Also, let us define wavelets as scaled and translated versions of the mother wavelet:

$$
\psi_{j k}(x):=2^{j / 2} \psi\left(2^{j} x-k\right) \quad \text { for } j \geq 0 \text { and } 0 \leq k \leq 2^{j}-1 .
$$

Let $f, g:[0,1] \rightarrow \mathbb{R}$. Define the inner product between f and g by

$$
\begin{equation*}
\langle f, g\rangle:=\int_{0}^{1} f(x) \overline{g(x)} d x \tag{1}
\end{equation*}
$$

Then we have orthogonality:

$$
\left\langle\psi_{j k}, \psi_{j^{\prime} k^{\prime}}\right\rangle= \begin{cases}1 & \text { if } j=j^{\prime} \text { and } k=k^{\prime} \\ 0 & \text { otherwise }\end{cases}
$$

Define the "detail" wavelet coefficients of a function f as follows:

$$
\begin{equation*}
d_{j k}:=\left\langle f, \psi_{j k}\right\rangle, \quad \text { for } j \geq 0 \text { and } 0 \leq k \leq 2^{j}-1, \tag{2}
\end{equation*}
$$

and the average coefficient as

$$
\begin{equation*}
c_{0}:=\langle f, \varphi\rangle . \tag{3}
\end{equation*}
$$

Then we can express f in terms of wavelets like this:

$$
\begin{equation*}
f(x)=c_{0} \varphi(x)+\sum_{j=0}^{\infty} \sum_{k=0}^{2^{j}-1} d_{j k} \psi_{j k} \tag{4}
\end{equation*}
$$

1.2 The Haar transform for discrete signals

Let $n=2^{m}$. Given a function $f:[0,1] \rightarrow \mathbb{R}$, denote its samples at n points as follows:

$$
\begin{equation*}
\mathbf{f}_{\nu}:=f\left(x_{\nu}\right), \quad \text { with } x_{\nu}=\frac{\nu-1}{n} \text { for } \nu=1, \ldots, n \text {. } \tag{5}
\end{equation*}
$$

We will use the vector notation $\mathbf{f}=\left[\mathbf{f}_{1}, \ldots, \mathbf{f}_{n}\right]^{T}$. Then the wavelet transform can be implemented as a matrix-vector product $\mathbf{w}=W \mathbf{f}$.

Let us illustrate the structure of the vector \mathbf{w} by a small example. Take $n=8$. Then

$$
\begin{equation*}
\mathbf{w}=\left[d_{20}, d_{21}, d_{22}, d_{23} ; d_{10}, d_{11} ; d_{00} ; c_{0}\right]^{T}=W \mathbf{f} \tag{6}
\end{equation*}
$$

1.3 Besov space norms

The general Besov space norm can be written as [7]

$$
\|f\|_{B_{p q}^{s}}:=\left(\left|c_{0}\right|^{q}+\sum_{j=0}^{\infty} 2^{j q\left(s+\frac{1}{2}-\frac{1}{p}\right)}\left(\sum_{k=0}^{2^{j}-1}\left|d_{j, k}\right|^{p}\right)^{\frac{q}{p}}\right)^{\frac{1}{q}}
$$

where $s \in \mathbb{R}$ and $1 \leq p, q<\infty$. Actually the parameter s has to satisfy $s<r$ where r is the regularity of the mother wavelet. However, we will not care about this below.

Our main interest here will be the space B_{11}^{1} in dimension 1 , whose norm is

$$
\begin{equation*}
\|f\|_{B_{11}^{1}}=\left|c_{0}\right|+\sum_{j=0}^{\infty} \sum_{k=0}^{2^{j}-1} 2^{j / 2}\left|d_{j, k}\right| . \tag{7}
\end{equation*}
$$

Now the Haar basis is not smooth enough for the theory to hold, but we do not care.
In the discrete case (7) takes the form

$$
\begin{equation*}
\|\mathbf{f}\|_{B_{11}^{1}}=\|B \mathbf{w}\|_{1} . \tag{8}
\end{equation*}
$$

Let us illustrate the structure of the weight matrix B using example (6). It is then

$$
B=\left[\begin{array}{cccccccc}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \sqrt{2} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & \sqrt{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

2 The minimization problem

2.1 Wavelet-based approach

Consider the minimization problem

$$
\begin{equation*}
\widetilde{\mathbf{f}}:=\arg \min _{\mathbf{f} \in \mathbb{R}^{n}}\left\{\|A \mathbf{f}-\mathbf{m}\|_{2}^{2}+\alpha^{\prime}\|\mathbf{f}\|_{B_{11}^{1}}\right\} \tag{9}
\end{equation*}
$$

where $\|\cdot\|_{B_{11}^{1}}$ denotes Besov space norm. This is interesting since the Besov space B_{11}^{1} is related to the Total Variation space but has different properties. See [2, 5, 4, 3] and [6, Chapter 7].

Roughly speaking, we can determine the wavelet coefficient vector $\widetilde{\mathbf{w}}=W \widetilde{\mathbf{f}}$ by solving this minimization problem:

$$
\begin{equation*}
\widetilde{\mathbf{w}}:=\arg \min _{\mathbf{w} \in \mathbb{R}^{n}}\left\{\left\|A W^{T} \mathbf{w}-\mathbf{m}\right\|_{2}^{2}+\alpha\|B \mathbf{w}\|_{1}\right\} \tag{10}
\end{equation*}
$$

where B is a diagonal weight matrix.
We do not discuss the relationship between the regularization parameters $\alpha>0$ and $\alpha^{\prime}>0$ further in this short note; since there are many equivalent norms for the space B_{11}^{1}, it is not straightforward how α and α^{\prime} should be related for $\widetilde{\mathbf{w}}=W \widetilde{\mathbf{f}}$ to hold.

See [1] for more information on wavelets.

2.2 Quadratic reformulation

We want to determine numerically the vector $\widetilde{\mathbf{w}} \in \mathbb{R}^{n}$ that solves (10). We write the vector $\mathbf{w} \in \mathbb{R}^{n}$ in the form

$$
B \mathbf{w}=\mathbf{v}_{+}-\mathbf{v}_{-},
$$

where $\mathbf{v}_{ \pm}$are nonnegative vectors: $\mathbf{v}_{ \pm} \in \mathbb{R}_{+}^{n}$, or $\left(\mathbf{v}_{ \pm}\right)_{j} \geq 0$ for all $j=1, \ldots, n$. Now minimizing 10 is equivalent to minimizing

$$
\left\|A W^{T} \mathbf{w}\right\|_{2}^{2}-2 \mathbf{m}^{T} A W^{T} \mathbf{w}+\alpha \mathbf{1}^{T} \mathbf{v}_{+}+\alpha \mathbf{1}^{T} \mathbf{v}_{-}
$$

where $\mathbf{1}$ is the vector with all elements equal to one: $\mathbf{1}=\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]^{T} \in \mathbb{R}^{n}$, and the minimization is taken over $y \in \mathbb{R}^{3 n}$ defined by

$$
\mathbf{y}=\left[\begin{array}{l}
\mathbf{w} \\
\mathbf{v}_{+} \\
\mathbf{v}_{-}
\end{array}\right], \quad \text { where } \quad \begin{aligned}
& \mathbf{w} \in \mathbb{R}^{n} \\
& \mathbf{v}_{+} \in \mathbb{R}_{+}^{n} \\
& \mathbf{v}_{-} \in \mathbb{R}_{+}^{n}
\end{aligned}
$$

Note the identity $\left\|A W^{T} \mathbf{w}\right\|_{2}^{2}=\mathbf{w}^{T} W A^{T} A W^{T} \mathbf{w}$ and write

$$
H=\left[\begin{array}{ccc}
2 W A^{T} A W^{T} & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right], \quad \mathbf{h}=\left[\begin{array}{c}
-2 W A^{T} \mathbf{m} \\
\alpha \mathbf{1} \\
\alpha \mathbf{1}
\end{array}\right]
$$

We then have the quadratic optimization problem in standard form

$$
\begin{equation*}
\arg \min _{\mathbf{y}}\left\{\frac{1}{2} \mathbf{y}^{T} H \mathbf{y}+\mathbf{h}^{T} \mathbf{y}\right\} \tag{11}
\end{equation*}
$$

with the constraints

$$
\left[\begin{array}{c}
y_{1} \tag{12}\\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{n+1} \\
\vdots \\
y_{2 n}
\end{array}\right]-\left[\begin{array}{c}
y_{2 n+1} \\
\vdots \\
y_{3 n}
\end{array}\right]
$$

and

$$
\begin{equation*}
y_{j} \geq 0 \text { for } j=n+1, \ldots, 3 n \tag{13}
\end{equation*}
$$

References

[1] I Daubechies. Ten lectures on wavelets (Ninth printing, 2006), volume 61 of CBMS-NSF Regional conference series in applied mathematics. SIAM, 2006.
[2] I. Daubechies, M. Defrise, and C. De Mol. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Communications on pure and applied mathematics, 57(11):1413-1457, 2004.
[3] Keijo Hämäläinen, Aki Kallonen, Ville Kolehmainen, Matti Lassas, Kati Niinimaki, and Samuli Siltanen. Sparse tomography. SIAM Journal on Scientific Computing, 35(3):B644-B665, 2013.
[4] V. Kolehmainen, M. Lassas, K. Niinimäki, and S. Siltanen. Sparsity-promoting Bayesian inversion. Inverse Problems, 28(2):025005, 2012.
[5] M. Lassas, E. Saksman, and S. Siltanen. Discretization-invariant Bayesian inversion and Besov space priors. Inverse Problems and Imaging, 3:87-122, 2009.
[6] J.L. Mueller and S. Siltanen. Linear and Nonlinear Inverse Problems with Practical Applications. SIAM, 2012.
[7] H. Triebel. Function spaces and wavelets on domains, volume 7 of Tracts in Mathematics. European Mathematical Society, 2008.

