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CAD (Computer-Aided Design)

NURBS (Non Uniform Rational B-Splines) the standard tool

to represent geometry in CAD systems, have been the

building blocks of CAD modelling.
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3D-Modelling

CNC (Computer Numerical Control) system, highly automated

using CAD and CAM (Computer-Aided Manucfacturing).

Courtesy: Wikipedia
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CAD is using NURBS

Why?

Early 1970s, Pierre Bezier

Courtesy: www.aiblog.it
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CAD is using NURBS

Why?

Early 1970s, Pierre Bezier

Fast in computation (small parameters)

Efficient!

Courtesy: www.aiblog.it
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Homogenous Object

Take the transversal slice from the object.

Collect the X-ray projection data.
In other words, we have access to a collection of line
integrals of the function f : R2 → R defined by

f(x, y) =

{
c for (x, y) ∈ Ω,
0 for (x, y) ∈ R2 \ Ω.

(1)
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.

The angular sampling of the X-ray data is very sparse,
allowing for quick measurement process (low radiation
dose/ few angle data).

Our aim is to recover two things: the boundary
∂Ω ⊂ R2 represented as a parameterized curve and the
attenuation coefficient c.
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Implementing Bayesian Inversion and
NURBS in Tomography Reconstruction

Bayesian Inversion and NURBS

w�
Recovering parameters

(Control Points and attenuation value)
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NURBS curve

(Loading video)

Video is taken from http://geometrie.foretnik.net
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Media File (video/quicktime)
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X-ray Measurement

Consider an attenuation function f : R2 → R,
f(x, y) ≥ 0 and supp(f) ⊂ Ω with bounded

detector

b

b1

0
0 a

Ω

Ω ⊂ R2.

dI(x)

I(x)
= −f(x, b1)dx,

where I(x) is the intensity of the X-ray at the point (x, b1)
while passing through the source to the detector.
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Radon Transform

The radon function of the function f depends on the
angular parameter α and on a linear parameter s ∈ R as
follows:

Rf(s, α) =

∫
x.~α=s

f(x)dx⊥,

where dx⊥ is the one dimensional Lebesgue measure along

the line {x ∈ R2 : x · ~α = s} and ~α =

[
cosα
sinα

]
∈ R2.
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Discrete Tomographic Data

In the pixel-based model, the line integral is discretized
using the standard pencil-beam model. We use the
pixel-based Matlab routine radon.m for simulating
parallel-beam tomographic data.

The measurement,

mi =

∫
Li

f(x, y)ds ≈ Σn
j=1aijfj ,

where aij is the distance that Li travels in the jth pixel.
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NURBS-based Tomographic Model

The line integral is discretized by moving to pixel-based
model using an operator B : R2n+1 → RN×N.

	
  

∂Ωc

0

B(v) =

{
c, if the pixel center is inside the NURBS curve,

0, if the pixel center is outside the NURBS curve,

(2)
where v ∈ R2n+1.
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Nonlinear Inverse Problem arises

Let R : RN×N → R and f : R2 → R.

Consider the indirect measurement m = Rf + ε, where
m ∈ Rk and f = B(v).

The inverse problem is to find f which depends on v when
the observation, m is given.
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Recast inverse problem as a Bayesian
inference

We use probability theory to model our lack of information
in the inverse problem. All the variables in the model are
considered as random variables.

Construct a prior density (information prior to the
measurement)

Construct likelihood function (the likelihood of
different between the observation and the unknown)

Explore the posterior probability density (what we
know about the unknown given observation)

Author Background 23 / 55



Recast inverse problem as a Bayesian
inference

Our model is m = R(B(v)) + ε.

Let ε ∼ N(0, σ2), so then

(m− R(B(v)) ∼ N(0, σ2)

Model of the measurement process:

π(m | v) = C exp(− 1

2σ2
‖R(B(v)−m‖22),

a likelihood function.
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Construct a priori information

Construct a priori information in a quantitative form:

Let v ∼ N(ṽ, σ22), so then

π(v) = exp(− 1

2σ22
‖v − ṽ‖22), (3)

where

v =



r1
θ1
.
.
.
θn
rn
c


, ṽ = V ∈ R2n+1.
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Construct a posterior distribution

The solution of the inverse problem is the posterior
probability distribution:

π(v |m) =
π(v)π(m | v)

π(m)

or

π(v |m) ∼ π(v)π(m | v).
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Monte Carlo Integration

Consider integral

E[g(x)] =

∫
g(x)π(x)dx,

where π(x) is a probability density and g ∈ L1(Rn).
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Monte Carlo Integration

Consider integral

E[g(x)] =

∫
g(x)π(x)dx,

where π(x) is a probability density, and g ∈ L1(Rn).
In traditional Gaussian quadratures:∫

g(x)π(x)dx ≈ ΣK
i ω

ig(xi),

a weighted sum of function values at specified points within
the domain of integration, where ωi are the weights and
xi, i = 1, ...,K are the grid points.
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Monte Carlo Integration

The Gaussian quadratures is infeasible in high dimensions.
It requires Kn integrations points, so then it needs a good
knowledge of π(x).
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Monte Carlo Integration

The Gaussian quadratures is infeasible in high dimensions.
It requires Kn integrations points, so then it needs a good
knowledge of π(x).

The idea of Monte Carlo is the grid points xi are generated
randomly, choose xi to be i.i.d. samples of π(x).

The law of large numbers :

lim
1

K
ΣK
i g(xi) = E[g(x)] =

∫
g(x)π(x)dx.
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Markov Chain Monte Carlo

Monte Carlo approximates expectations

with a sample average:

E(p) ≈ 1
n

∑n
i=1 pi,

pi are i.i.d..

Markov chain Monte Carlo methods involve a Markov process

in which a sequence of state pi is generated.

Each sample pi has a probability distribution that depend on

the previous state pi−1.
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Metropolis Hastings

Our model is m = R(B(v)) + ε.

1. Set l = 0 and initialize v(0).

2. Draw a random integer k from 1 to number of control
points.

3. Set v := vk + εk.

4. If π(v|m) ≥ π(v(l)|m) then set v(l+1) := v.

5. Draw a random number s from uniform distribution on
[0, 1]. If s ≤ π(v|m)

π(vl|m)
then set v(l+1) = v, else set

v(l+1) := v(l).

6. l = L then stop; else set l := l + 1 and go to 2nd step.
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Conditional Mean Estimate

The CM (Conditional Mean) estimate is defined by

vCM =

∫
Rn

vπ(v |m)dv = E(v)

where v = {v(l)}Ll=1.
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Conditional Mean Estimate

The CM (Conditional Mean) estimate is defined by

vCM =

∫
Rn

vπ(v |m)dv = E(v)

where v = {vl}Ll=1.

Using MCMC:

vCM ≈ 1

L

L∑
l=1

vl.
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Conditional Mean Estimate

The CM (Conditional Mean) estimate is defined by

vCM =

∫
Rn

vπ(v |m)dv = E(v)

where v = {vl}Ll=1.

Using MCMC:

vCM ≈ 1

L

L∑
l=1

vl.

Then, we recover

fCM = B(vCM).
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CT Data
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Setting up

Recover 12 control points p and attenuation c using
Metropolis Hasting algorithm with 8 angles.
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NURBS-MCMC reconstruction
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Original and NURBS-MCMC
reconstruction
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Original, TV and NURBS-MCMC
reconstruction
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Courtesy: dammgoodwater.com
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Consider homogeneous simple corrosion pipe and set the

attenuation is 1 for the pipe and 1
30 inside the pipe.

Author Corrosion Pipe Reconstruction 43 / 55



Consider homogeneous simple corrosion pipe and set the

attenuation is 1 for the pipe and 1
30 inside the pipe.

Author Corrosion Pipe Reconstruction 44 / 55



Recovering 20 control points and the attenuation value
where N = 1000000 and 12 angles.
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Target NURBS-MCMC

FBP Tikhonov
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Conclusion

We have demonstrated that NURBS curves combining
with MCMC can be used in computational inversion
tomography.

The result is automatically in CAD format (the
building blocks of CAD modelling).

The potential drawback MCMC computation is heavy
(expensive) but it can be handle using parallel
computing.
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Non Uniform Rational B-Splines
(NURBS)

Parametric representation of a curve and surface.

Curve
S : [0, 1]→ R2.

They are basically piecewise polynomial functions.
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Non Uniform Rational B-Splines
(NURBS)

The general form of a NURBS curve is:

S(t) =

∑n
i=0 PiNi,p(t)ωi∑n
i=0Ni,p(t)ωi

=

n∑
i=0

PiRi,p(t),

where Ni,p(t) are B-splines basis function, Pi are the
control points, ωi are the weights, and

Ri,p(t) =
ωiNi,p(t)∑n
i=0 ωiNi,p(t)

,

are the rational B-splines basis function. The ωi ≥ 0 for all
values of i.
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Important parts in NURBS

Control Point (Pi)
A set of points by which the positions can determine
the NURBS curves.

Knots (t)
Defines how much information should be shared by
segments. This vector divides the curve into intervals.
The knots are needed to get the curve to settle in the
proper space. A knot vector in one dimension is a set
of coordinates in the parametric space, written

t = {t1, t2, ..., tn+p+1},
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Basis Function (Ni,p(t))
A function which determines how strongly control
point, Pi influences the curve at time t.

Ni,0(t) =

{
1 if ti ≤ t < ti+1

0 otherwise

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t)+

ti+p+1 − t
ti+p+1 − ti+1

N1+i,p−1(t).

Order (p)
A positive whole number plus zero, refers to the
highest exponent in the polynomial basis function
used for NURBS. p = 0, 1, 2, 3, etc., refers to constant,
linear, quadratic, cubic, etc., piecewise polynomials,
respectively.

Author Revisited :NURBS 52 / 55



Basis Function (Ni,p(t))
A function which determines how strongly control
point, Pi influences the curve at time t.

Ni,0(t) =

{
1 if ti ≤ t < ti+1

0 otherwise

Ni,p(t) =
t− ti

ti+p − ti
Ni,p−1(t)+

ti+p+1 − t
ti+p+1 − ti+1

N1+i,p−1(t).

Order (p)
A positive whole number plus zero, refers to the
highest exponent in the polynomial basis function
used for NURBS. p = 0, 1, 2, 3, etc., refers to constant,
linear, quadratic, cubic, etc., piecewise polynomials,
respectively.

Author Revisited :NURBS 52 / 55



Knots

Example of uniform knot vector:
[0 0.25 0.5 0.75 1.0] Some examples of open
uniform knot vector :

p = 2, [0 0
1

4

1

2

3

4
1 1]

p = 3, [0 0 0
1

3

2

3
1 1 1]

p = 4, [0 0 0 0
1

2
1 1 1 1]
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Knots

Formally, an open uniform knot vector is given by

ti = 0, 0 ≤ i ≤ p
ti = i− p, p+ 1 ≤ i ≤ n+ 1

ti = n− p+ 2, n+ 2 ≤ i ≤ n+ p+ 1

Non uniform knot vectors may have either spaced and/or
multiple internal knot values. Here are the examples

[0 0 0.28 0.5 0.72 1]
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Closed NURBS Curve

Set the same control point in the ends by using open
uniform knot vector.

Repeat the p− 1 control points by using periodic
uniform knot vector.
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