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INTRODUCTION
The aim of this work is to practice sparse-angle 2D tomog-
raphy. We consider tomographic data on a walnut taken
from 20 angles with 9 degree angular steps, and our goal
is to infer the attenuation of different parts of the walnut
from the measurements. As a result we get a discrete ill-
posed inverse problem.

We build a discretized measurement model where the at-
tenuation of the object is modeled by a 778 × 778 pixel
image f . The attenuation is assumed to be non-negative
and constant in each pixel. The pixels are numbered from
1 toN = 7782 and the attenuation is stored as f ∈ RN . The
measurements are taken by fan beam geometry but in the
calculations we assume parallel beam geometry. The num-
ber of measurement directions is J = 20 and the number
of measurements per direction is 1105, and so the measure-
ment data is collected in m ∈ Rk, k = 22100.

A measurementmi gives the line integral of the attenuation
f over the line Li and is approximated by the sum

mi =

N∑
j=1

aijfj,

where aij is the length of the intersection of Li and the jth
pixel. The lengths aij comprise the matrix A ∈ Rk×N . We
thus get a discrete measurement model

Af = m (1)

where f is to be determined.

Equation (1) is ill-posed, and naïve least squares inversion
is highly susceptible to measurement noise. The inevitable
presence of noise in practical measurement forces us to use
regularization instead of simply looking for a least-squares
solution of problem (1) (see [MS]).

METHODS AND MATERIALS
As a reconstruction tool we use total variation (TV) regu-
larization. In contrast to the classical filtered back-projection
(FBP), total variation regularization is well-suited to sparse
angle tomography. It allows sharp edges in the reconstruc-
tion and simultaneously removes noise efficiently by pro-
moting sparsity of the gradient of the attenuation. The idea
is to strike a balance between minimizing the discrepancy
‖Af −m‖2 and minimizing the total variation of f .

Total variation regularization was introduced by Rudin,
Osher and Fatemi in [ROF]. For more on total variation
regularization in tomographic imaging see e.g. [HHHKNS]
and [MS].

In order to discretize total variation regularization recall
that in MATLAB’s enumeration of pixels fj+n is the right
neighbor and fj+1 the downward neighbor of fj. We form
the horizontal difference operatorLH defined by (LHf)j :=
fj+n − fj and the vertical difference operator LV given by
(LV f)j := fj+1 − fj. The functional to be minimized is
G(f) := ‖Af −m‖22+α(

∑N
j=1 |(LHf)j|+

∑N
j=1 |(LV f)j|),

where α > 0 is a suitable regularization parameter.

The dimension of the minimization problem is so large that
iterative methods are required in order to find an approxi-
mate minimizer in reasonable computation time. We use a
gradient-based optimization method, and that requires us
to replace |t| by |t|β :=

√
t2 + β, β > 0, in the penalty

term of G since |t| is not differentiable at zero. The objec-
tive functional to be minimized thus becomes

Gβ(f) := ‖Af−m‖22+α

 N∑
j=1

|(LHf)j|β +
N∑
j=1

|(LV f)j|β

.
In this work we choose the parameter value β = 0.000001.

In the minimization of Gβ we use the Barzilai-Borwein
(BB) method introduced in [BB]. (To be quite precise, we
use the projected Barzilai-Borwein (PBB) method since
we enforce the constraint f ≥ 0 at each step of the it-
eration.) The BB method is a modification of the classi-
cal steepest descent (SD) method; the step direction is the
same as in SD but the step length is chosen without having
to perform a computationally costly line search. The BB
method is well-suited to the study of optimization prob-
lems of a very large scale; it requires few values to be
stored and few computations. Furthermore, it converges

much faster than the SD method. For more on the BB
method see e.g. [Fle] and the references contained therein.
The PBB method is applied to total variation reconstruc-
tion in [HHHKNS].

We next describe the BB method in the case of the opti-
mization problem at hand. When ` iteration steps of f and
Gβ(f) have been computed, in quasi-Newton methods one
sets

f (`+1) = f (`) − (B`)
−1∇Gβ(f

(`)) (2)

where B` ∈ RN×N is an approximation of the Hessian
∇2Gβ(f

(`)). Usually Bl is chosen to satisfy the secant
equation B`y` = g`, where

y` := f (`) − f (`−1),
g` := ∇Gβ(f

(`))−∇Gβ(f
(`−1)).

Barzilai and Borwein chose in (2) the first-order approx-
imation B` = α`I , where α` ∈ R gives the least-squares
solution of the secant equation (α`I)y` = g`.

Once α` is computed, the BB method obtains the form

f (`+1) = f (`) − δ`∇Gβ(f
(`)),

where the step length δ` is given by the formula

δ` =
yT` y`
yT` g`

.

We choose the first step length by a steepest descent type
line search within the logarithmic scale from 10−6 to 10−1.
We stress that the BB method is non-monotone, that is, the
value of Gβ does not necessarily decrease at every itera-
tion!

We select the regularization parameter α > 0 by using the
S-curve method of Kolehmainen, Lassas, Niinimäki and
Siltanen (see [MS, p. 89]). We first photograph a sawed
walnut and calculate the amount of essentially nonzero co-
efficients in the Fourier transform of the attenuation; this
is used as an estimate of the number of essentially nonzero
coefficients for the walnut we use in the measurement.

We then use parallel computation to form the total vari-
ation reconstruction f for different values of parameter α
which reside on a logarithmic scale from 10−6 to 10. By
spline interpolation we choose α such that the number of
essentially nonzero coefficients of the Fourier transform
of f is closest to the estimate we obtained from the sawed
walnut.

The total variation reconstruction is obtained by using the
parameter α picked by the S-curve method and performing

Figure 1: Left: Ground truth. Middle: TV reconstruction with 20 measurement angles, relative square norm error 43%. Right: FBP reconstruction
with 20 measurement angles, relative square norm error 122%.

Figure 2: Plot of the S-curve. The vertical
dashed line shows the interpolated value
α = 0.0014 that is closest to the estimate
from the sawed walnut.

Figure 3: Evolution of the objective func-
tional Gβ during the 200-step Barzilai-
Borwein iteration process.

Figure 4: The normalized attenuation val-
ues of the ground truth (black) and the TV
reconstruction (red) at a single row in the
middle of the pixel image.

200 iterations in the BB method. We calculate the relative
reconstruction error by comparing the reconstruction to
the "ground truth" which is obtained by forming a filtered
back-projection reconstruction of the walnut with 180 mea-
surement angles.

RESULTS
The results of the S-curve method are shown in Figure 2.
The value picked by the method is α = 0.0014. A plot
of the evolution of the objective functional Gβ is shown in
Figure 3. Note that a rather steady level of Gβ is achieved
already in around 30 to 40 iterations.

The TV reconstruction is shown in the middle of Figure
1; the FBP reconstruction with 20 measurement angles is
also reproduced for comparison. The relative square norm
error of the TV reconstruction is 43% and that of the FBP
reconstruction is 122%. Figure 4 illustrates the variation
of the attenuation within the walnut.

DISCUSSION
The results support the contention that total variation regu-
larization is an efficient method of 2D tomographic imag-
ing when few measurement angles are available. The great
speed of convergence of the Barzilai-Borwein method was,
however, a surprise to the authors.

This work could be extended to many directions. One pos-
sible further project would be to monitor the evolution of
the square norm error when the number of measurement
angles is decreased.
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