Inverse problems course University of Helsinki Department of Mathematics and Statistics Samuli Siltanen and Andreas Hauptmann Related book sections (Mueller & Siltanen 2012):

Theoretical exercises:

T1. Set

$$A = \left[\begin{array}{cc} 1 & 0 \\ 2 & 0 \end{array} \right].$$

Exercise 3 (February 3–5, 2015)

- (a) Draw the range of A as a subset of \mathbb{R}^2 . Draw also the point (0,1) to the same image.
- (b) Find the least-squares solution(s) of equation Af = m, where $m = [0, 1]^T$.
- (c) Determine the minimum-norm solution of equation Af = m by geometric arguments. (Analyze the triangles involved.)
- T2. (a) Diagonalize (by hand, not computer) the symmetric matrix $A^T A$, where A is as above. Make sure that the eigenvectors are orthonormal.
 - (b) Follow the method of Problem T3 of Exercise 2 and calculate the singular value decomposition of A by hand.
 - (c) Find the minimum-norm solution of equation Af = m by Moore-Penrose pseudoinverse. Do you get the same answer than in Problem T1?
- T3. Thin lines depict pixels and thick lines X-rays in this image:

Give a numbering to the nine pixels $(f \in \mathbb{R}^9)$ and to the six X-rays $(m \in \mathbb{R}^6)$, and construct the matrix A for the measurement model m = Af. The length of the side of a pixel is one.

Matlab exercises:

M1. Consider equations $x_1 + x_2 = 1$, $x_2 = -2$ and $-\frac{1}{3}x_1 + x_2 = -2$.

- (a) Write the equations in the matrix form Ax = y. (That is, specify the elements in the 3×2 matrix A and the vector $y \in \mathbb{R}^3$.)
- (b) Use Matlab to compute the singular value decomposition $A = UDV^T$.
- (c) Using the result of (b), construct D^+ and the minimum norm solution $x^+ := VD^+U^Ty$ in Matlab. Draw the three lines specified by the equations and the point x^+ in the (x_1, x_2) -plane. Discuss the result.

M2. The condition number of a square matrix A of size $n \times n$ is defined by

$$\operatorname{cond}(A) := \frac{d_1}{d_n},$$

where d_1 and d_n are the first and last singular values of A, respectively.

Download the Matlab routine XRO1_buildA.m from the course website. There, you can choose two crucial numbers: N determines the size of the reconstruction (which is $N \times N$), and T is the number of projection directions evenly distributed between 0 and 180 degrees.

- (a) Let T be constant and increase N step by step. Use the command spy(A) to see the structure of the measurement matrix. What happens to cond(A) when N grows? Why?
- (b) Let \mathbb{N} be constant and increase \mathbb{T} step by step. Use the command $\operatorname{spy}(\mathbb{A})$ to see the structure of the measurement matrix. What happens to $\operatorname{cond}(A)$ when \mathbb{T} grows? Why?