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1 Radon transform and radiographs

As explained above, the starting point of X-ray tomography is the knowledge
of line integrals of the unknown attenuation coefficient for a collection of
lines. These lines are in three-dimensional space, but since sometimes it
is convenient to measure 2-D slices of the object, we present measurement
geometries in both R2 and R3.

Let us discuss the 2-D case first. Let f(x) = f(x1, x2) be the attenuation
coefficient. The most classical model for the data is the so-called Radon
transform

Rf(θ, s) =

∫
x·θ=s

f(x)dx =

∫
y∈θ⊥

f(sθ + y)dy, θ ∈ S1, s ∈ R, (1)

where S1 is the unit circle, θ⊥ is the orthogonal complement of the unit vector
θ and x · θ denotes vector inner product. We will abuse notation and let θ
mean the unit vector (cos θ, sin θ) ∈ R2 parametrized by the angle θ ∈ [0, 2π].

An equivalent operator, intuitively better suited for X-ray tomography is
the parallel beam radiograph

Pf : {(θ, x) ∈ S1 × R |x ∈ θ⊥} → R, (2)

Pθf(s) =

∫ ∞
−∞

f(x+ tθ)dt. (3)

Note that here the unit vector θ points in the direction of the X-ray whereas
in Radon transform they are orthogonal. First generation CT scanners were
based on the parallel beam measurement geometry: with a fixed angle a
collection of very thin, parallel rays were measured. As the angle varied over
a half-circle, the whole parallel beam radiograph was achieved for a 2-D slice
of the patient.

The need to lower patient dose suggests the use of a 2-D fan beam. Here
we introduce the measurement circle A with radius R:

A = {x ∈ R2 | |x| = R}.
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The divergent beam radiograph is given by

Daf(θ) =

∫ ∞
0

f(a+ tθ)dt, (4)

and we think of the X-ray source being located on A and sending a beam to
direction θ.

The two radiographs are related by the formula

Pθf(Eθx) = Dxf(θ) +Dxf(−θ), (5)

where
Eθ(x) = x− (x · θ)θ (6)

is the orthogonal projection to the orthogonal complement θ⊥ of θ.
The 3-D version of Radon transform integrates over hyperplanes x · θ = s

and thus is not practically so useful as the two radiographs. They generalize
to 3-D simply by replacing θ by a three-dimensional unit vector in the for-
mulae. We remark that the 3-D version of the divergent beam radiograph is
called the cone-beam transform.

2 Filtered Back-Projection

We present here the most popular CT algorithm called filtered backprojection.
It is based on this basic idea: to reconstruct f at a point x, the most obvious
data related to f(x) are the integrals over lines passing through x. Let us sum
them all together, call the result Tf(x) and see what we get by introducing
polar coordinates:

Tf(x) =

∫ π

0

∫ ∞
−∞

f(x+ tθ)dtdθ

=

∫ 2π

0

∫ ∞
0

f(x+ tθ)

t
tdtdθ

=

∫
R2

f(x+ y)

|y|
dy

=

∫
R2

f(y)

|x− y|
dy

= (f(y) ∗ 1

|y|
)(x), (7)
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where ∗ stands for convolution.
We want to find an inverse operator for T . Recall that Fourier transform

converts convolution to multiplication (i.e. ĝ ∗ h = ĝĥ) and

1̂

|y|
(ξ) =

1

|ξ|
.

Furthermore, define the Calderón operator Λ in all dimensions Rn by

Λf(x) := F−1|ξ|f̂(ξ) =
1

(2π)n

∫
Rn

eix·ξ|ξ|f̂(ξ)dξ, (8)

where F−1 is the inverse Fourier transform. Note that Λ can be thought of
as a high-pass filter. Now we see that

T̂ f(ξ) =
f̂(ξ)

|ξ|
,

and thus
ΛTf = f. (9)

On the other hand, we can relate Tf to the measurements with the fol-
lowing formula:

Tf(x) =

∫ π

0

∫ ∞
−∞

f(Eθx+ tθ)dtdθ

=

∫ π

0

Pθf(Eθx)dθ.

Thus we arrive at the famous reconstruction formula

f(x) = Λ

∫ π

0

Pθf(Eθx)dθ (10)

originally proposed by Johann Radon in 1917.
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