Mathematical derivation of the Filtered Back-Projection method

Samuli Siltanen 2015

1 Radon transform and radiographs

As explained above, the starting point of X-ray tomography is the knowledge of line integrals of the unknown attenuation coefficient for a collection of lines. These lines are in three-dimensional space, but since sometimes it is convenient to measure 2-D slices of the object, we present measurement geometries in both \mathbb{R}^{2} and \mathbb{R}^{3}.

Let us discuss the 2-D case first. Let $f(x)=f\left(x_{1}, x_{2}\right)$ be the attenuation coefficient. The most classical model for the data is the so-called Radon transform

$$
\begin{equation*}
R f(\theta, s)=\int_{x \cdot \theta=s} f(x) d x=\int_{y \in \theta^{\perp}} f(s \theta+y) d y, \quad \theta \in S^{1}, s \in \mathbb{R} \tag{1}
\end{equation*}
$$

where S^{1} is the unit circle, θ^{\perp} is the orthogonal complement of the unit vector θ and $x \cdot \theta$ denotes vector inner product. We will abuse notation and let θ mean the unit vector $(\cos \theta, \sin \theta) \in \mathbb{R}^{2}$ parametrized by the angle $\theta \in[0,2 \pi]$.

An equivalent operator, intuitively better suited for X-ray tomography is the parallel beam radiograph

$$
\begin{gather*}
P f:\left\{(\theta, x) \in S^{1} \times \mathbb{R} \mid x \in \theta^{\perp}\right\} \rightarrow \mathbb{R}, \tag{2}\\
P_{\theta} f(s)=\int_{-\infty}^{\infty} f(x+t \theta) d t . \tag{3}
\end{gather*}
$$

Note that here the unit vector θ points in the direction of the X-ray whereas in Radon transform they are orthogonal. First generation CT scanners were based on the parallel beam measurement geometry: with a fixed angle a collection of very thin, parallel rays were measured. As the angle varied over a half-circle, the whole parallel beam radiograph was achieved for a 2-D slice of the patient.

The need to lower patient dose suggests the use of a 2-D fan beam. Here we introduce the measurement circle A with radius R :

$$
A=\left\{x \in \mathbb{R}^{2}| | x \mid=R\right\}
$$

The divergent beam radiograph is given by

$$
\begin{equation*}
\mathcal{D}_{a} f(\theta)=\int_{0}^{\infty} f(a+t \theta) d t \tag{4}
\end{equation*}
$$

and we think of the X -ray source being located on A and sending a beam to direction θ.

The two radiographs are related by the formula

$$
\begin{equation*}
P_{\theta} f\left(E_{\theta} x\right)=D_{x} f(\theta)+D_{x} f(-\theta), \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
E_{\theta}(x)=x-(x \cdot \theta) \theta \tag{6}
\end{equation*}
$$

is the orthogonal projection to the orthogonal complement θ^{\perp} of θ.
The 3-D version of Radon transform integrates over hyperplanes $x \cdot \theta=s$ and thus is not practically so useful as the two radiographs. They generalize to 3 -D simply by replacing θ by a three-dimensional unit vector in the formulae. We remark that the 3-D version of the divergent beam radiograph is called the cone-beam transform.

2 Filtered Back-Projection

We present here the most popular CT algorithm called filtered backprojection. It is based on this basic idea: to reconstruct f at a point x, the most obvious data related to $f(x)$ are the integrals over lines passing through x. Let us sum them all together, call the result $T f(x)$ and see what we get by introducing polar coordinates:

$$
\begin{align*}
T f(x) & =\int_{0}^{\pi} \int_{-\infty}^{\infty} f(x+t \theta) d t d \theta \\
& =\int_{0}^{2 \pi} \int_{0}^{\infty} \frac{f(x+t \theta)}{t} t d t d \theta \\
& =\int_{\mathbb{R}^{2}} \frac{f(x+y)}{|y|} d y \\
& =\int_{\mathbb{R}^{2}} \frac{f(y)}{|x-y|} d y \\
& =\left(f(y) * \frac{1}{|y|}\right)(x) \tag{7}
\end{align*}
$$

where $*$ stands for convolution.
We want to find an inverse operator for T. Recall that Fourier transform converts convolution to multiplication (i.e. $\widehat{g * h}=\hat{g} \hat{h}$) and

$$
\frac{\widehat{1}}{|y|}(\xi)=\frac{1}{|\xi|}
$$

Furthermore, define the Calderón operator Λ in all dimensions \mathbb{R}^{n} by

$$
\begin{equation*}
\Lambda f(x):=\mathcal{F}^{-1}|\xi| \hat{f}(\xi)=\frac{1}{(2 \pi)^{n}} \int_{\mathbb{R}^{n}} e^{i x \cdot \xi}|\xi| \hat{f}(\xi) d \xi \tag{8}
\end{equation*}
$$

where \mathcal{F}^{-1} is the inverse Fourier transform. Note that Λ can be thought of as a high-pass filter. Now we see that

$$
\widehat{T f}(\xi)=\frac{\hat{f}(\xi)}{|\xi|}
$$

and thus

$$
\begin{equation*}
\Lambda T f=f \tag{9}
\end{equation*}
$$

On the other hand, we can relate $T f$ to the measurements with the following formula:

$$
\begin{aligned}
T f(x) & =\int_{0}^{\pi} \int_{-\infty}^{\infty} f\left(E_{\theta} x+t \theta\right) d t d \theta \\
& =\int_{0}^{\pi} P_{\theta} f\left(E_{\theta} x\right) d \theta
\end{aligned}
$$

Thus we arrive at the famous reconstruction formula

$$
\begin{equation*}
f(x)=\Lambda \int_{0}^{\pi} P_{\theta} f\left(E_{\theta} x\right) d \theta \tag{10}
\end{equation*}
$$

originally proposed by Johann Radon in 1917.

