Dr. Miren Zubeldia, C414
E-mail: miren.zubeldia@helsinki.fi

Integral Equations
Due to
Spring 2015
E-mail: ismael.bleyer@helsinki.f

Exercise List 4

16. Let X be a linear space and $A, B: X \longrightarrow X$ be linear operators with $A B=B A$. If $A B$ is invertible, what can you say about the invertibility of A and B ?
17. Find a normed space X and a compact operator $K: X \longrightarrow X$ for which

$$
X \neq \operatorname{Ker}(I-K) \oplus \operatorname{Im}(I-K) .
$$

18. Let

$$
k(x, y):=\chi_{[0,1]}(x) \chi_{[0,1]}(y)+\chi_{[0,2]}(x) \chi_{[1,2]}(y)
$$

for $x, y \in[0,2]$ and let $K: L^{2}([0,2]) \longrightarrow L^{2}([0,2])$ be an integral operator induced by the kernel K. Please show that the Riesz index of $(I-K)$ is $\nu=2$.
19. Consider the following integral equation

$$
f(x)-\int_{0}^{1} k(x, y) f(y) d y=1, \quad x \in[0,1]
$$

with the Volterra kernel

$$
k(x, y):= \begin{cases}1 & \text { if } y \leq x \\ 0 & \text { if } y>x\end{cases}
$$

We approximate the kernel k with degenerate kernels

$$
k_{n}(x, y):=\sum_{i=1}^{n} \chi_{\left(\frac{i-1}{n}, \frac{i}{n}\right)}(x) \chi_{\left[0, \frac{i-1}{n}\right]}(y),
$$

where χ_{I} are the characteristic functions on the interval I. Compute the solutions $f_{n}, n \in \mathbb{N}$, of

$$
f_{n}(x)-\int_{0}^{1} k_{n}(x, y) f_{n}(y) d y=1, \quad x \in[0,1]
$$

and the limit as $n \rightarrow \infty$, if it exists.
20. (Numerics) Let $I=[0,1] \subset \mathbb{R}, k: I \times I \longrightarrow \mathbb{C}, g \in C(I)$. Consider the integral equation

$$
\begin{equation*}
f(x)-\int_{I} k(x, y) f(y) d y=g(x), \quad x \in I \tag{1}
\end{equation*}
$$

Our goal is to solve equation (1) numerically.
(i) First discretize the integral using the standard discretization method (i.e., rectangle method) for given n points ($n-1$ equally spaced intervals).
In fact, let $y_{i}=(i-1) \frac{1}{n-1}, i=1, \ldots, n$, and show that the integral operator can be written as

$$
(K f)(x):=\int_{I} k(x, y) f(y) d y \approx \frac{1}{n-1} \sum_{i=1}^{n} k\left(x, y_{i}\right) f\left(y_{i}\right)
$$

(ii) We next discretize on the variable x, using the same number of points. Indeed, for $x_{j}=(j-1) \frac{1}{n-1}, j=1, \ldots n$, we consider

$$
\begin{equation*}
f\left(x_{j}\right)-\frac{1}{n-1} \sum_{i=1}^{n} k\left(x_{j}, y_{i}\right) f\left(y_{i}\right)=g\left(x_{j}\right) . \tag{2}
\end{equation*}
$$

Thus, if we denote

$$
f_{n}=\left[\begin{array}{c}
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{n}\right)
\end{array}\right], \quad g_{n}=\left[\begin{array}{c}
g\left(x_{1}\right) \\
\vdots \\
g\left(x_{n}\right)
\end{array}\right]
$$

and the matrix $K=\left(k_{j i}\right)_{i, j=1, \ldots, n}$ with $k_{j i}=k\left(x_{j}, y_{i}\right)$ and $\lambda=\frac{1}{n-1}$ then (2) can be written as the following linear system

$$
(I-\lambda K) f_{n}=g_{n}
$$

(iii) Let $g(x)=2 x$ and

$$
k(x, y):= \begin{cases}x-y & \text { if } y \leq x \\ 0 & \text { if } y>x\end{cases}
$$

(as in Exercise 1 of the ExList1).
Create the corresponding matrix K and vector g_{n} as above, and solve the linear system $(I-\lambda K) f_{n}=g_{n}$ with some linear algebra techniques or simply inverting it using some Matlab command

```
>> x = A \ b
>> x = inv(A)*b
```

(iv) Compare the above solution f_{n} with the analytical solution given previously in ExList1. How many points did you choose? Compare the quality of the solution to the number of points n.

