Dr. Miren Zubeldia, C414
E-mail: miren.zubeldia@helsinki.fi

Integral Equations
Spring 2015
Due to
28.01.2015

Exercise List 2

6. Let K be a continuous integral kernel. Let us consider the iterated kernels

$$
K^{(1)}(s, t)=K(s, t), \quad K^{(n)}(s, t)=\int_{t}^{s} K(s, r) K^{(n-1)}(r, t) \mathrm{d} r,
$$

which were defined in the lectures.
(i) Show that

$$
K^{(n)}(s, t)=\int_{t}^{s} K^{(n-1)}(s, r) K(r, t) \mathrm{d} r .
$$

Hint: Use induction on n.
(ii) Give a detailed proof for the uniform convergence of the series defining the resolvent kernel

$$
\begin{aligned}
& \quad \Gamma(x, y ; \lambda)=K(x, y)+\lambda K^{(2)}(x, y)+\ldots+\lambda^{n-1} K^{(n)}(x, y)+\ldots \\
& \text { for }|\lambda|<\infty
\end{aligned}
$$

7. Consider the integral equation

$$
f(x)+\frac{1}{20} \int_{0}^{1} e^{-|x y|^{2}} \sin \left(x^{2}+y^{2}\right) f(y) \mathrm{d} y=\sin x
$$

Prove that this has a unique solution $L^{2}([0,1])$, and that in fact this solution is also continuous.
8. Let H be a Hilbert space, and $A: H \longrightarrow H$ a bounded linear map for which $\left\|A^{n_{0}}\right\|<1$ for some positive integer n_{0}. Prove that $I-A$ is invertible and determine its inverse.
9. Convolution is one of the most important examples of integral operators. Given functions f, g on \mathbb{R}, their convolution is the function $f * g$ defined by

$$
(f * g)(x)=\int_{\mathbb{R}} g(x-y) f(y) d y
$$

provided that the integral makes sense. Note that with g fixed, the mapping $f \mapsto f * g$ is an integral operator with kernel $k(x, y)=g(x-y)$.
(i) Let $g \in L^{1}(\mathbb{R})$ be fixed. Show that $K f=f * g$ is a bounded mapping of $L^{2}(\mathbb{R})$ into itself.
Hint: Use Young's Inequality.
(ii) Prove that convolution is commutative, i.e., that $f * g=g * f$.
(iii) Let $f, g \in L^{1}(\mathbb{R})$. Prove that $f * g \in L^{1}(\mathbb{R})$ and $\|f * g\|_{L^{1}} \leq$ $\|f\|_{L^{1}}\|g\|_{L^{1}}$.
(iv) Show that if $g \in L^{1}(\mathbb{R})$ and $g \in C([a, b])$, then $f * g \in C([a, b])$.
(v) Show that if $g \in L^{1}(\mathbb{R})$ and f is differentiable, then $f * g$ is also differentiable and $\frac{d}{d x}(f * g)=\frac{d f}{d x} * g$.
10. (Numerics) Let \mathcal{F} be the Fourier transform on the circle, i.e., it is the isomorphism $\mathcal{F}: L^{2}([0,1]) \rightarrow l^{2}(\mathbb{Z})$ given by $\mathcal{F} f=\widehat{f}=\{\widehat{f}(n)\}_{n \in \mathbb{Z}}$, where

$$
\widehat{f}(n)=\left\langle f, e_{n}\right\rangle=\int_{0}^{1} e^{2 \pi i n x} f(x) d x, \quad e_{n}(x)=e^{2 \pi i n x}
$$

Note that it is an integral operator with kernel $k(n, x)=e^{2 \pi i n x}$.
(i) Prove that the Fourier transform converts convolution into multiplication. That is, prove that if $f, g \in L^{2}([0,1])$, then

$$
\widehat{(f * g)}(n)=\widehat{f}(n) \widehat{g}(n), \quad n \in \mathbb{Z} .
$$

(ii) In Matlab investigate the discrete Fourier transform and its inverse
>> help fft
(ii) Consider the following functions in the interval $[-2,2]$

$$
\begin{gather*}
f(x)= \begin{cases}1 & |x| \leq 1 \\
0 & \text { elsewhere }\end{cases} \tag{1}\\
g(x)= \begin{cases}1-|x| & \text { if }|x| \leq a \\
0 & \text { elsewhere }\end{cases} \tag{2}
\end{gather*}
$$

Create an approximation of these functions and calculate the timedomain convolution using the builtin function as follows:

```
>> conv(f,f)
>> conv(g,g)
>> conv(f,g)
```

(iii) Now that we know what output to expect, compute using the convolution property proved in 10.(i)

