
FRACTAL SETS IN ANALYSIS

PERTTI MATTILA

These notes give a sketch of the lectures; definitions, theorems and perhaps
some ideas but not many detailed proofs.

1. MEASURES AND DIMENSIONS

The s-dimensional Hausdorff measureHs, s ≥ 0, is defined by

Hs(A) = lim
δ→0
Hs
δ(A),

where, for 0 < δ ≤ ∞,

Hs
δ(A) = inf{

∑
j

d(Ej)
s : A ⊂

⋃
j

Ej, d(Ej) < δ}.

Here d(E) denotes the diameter of the set E.
The Hausdorff dimension of A ⊂ Rn is

dimA = inf{s : Hs(A) = 0} = sup{s : Hs(A) =∞}.

Since (as an easy exercise),Hs(A) = 0 if and only ifHs
∞(A) = 0, we can replace

Hs in the definition of dim by the simplerHs
∞. So, more simply,

dimA = inf{s : ∀ε > 0 ∃E1, E2, · · · ⊂ X such that A ⊂
⋃
j

Ej and
∑
i

d(Ej)
s < ε}.

For the definition of dimension, the sets Ej above can be restricted to be balls,
because each Ej is contained in a ball Bj with d(Bj) ≤ 2d(Ej). The spherical
measure obtained using balls is not the same as the Hausdorff measure but it is
betweenHs and 2sHs.
Hs is a Borel regular outer measure: Borel sets areHs measurable and for every

A ⊂ Rn there is a Borel set B such that A ⊂ B andHs(A) = Hs(B).
Hausdorff dimension is countably stable, that is,

dim
∞⋃
i=1

Ai = sup
i

dimAi.

Let
A(δ) = {x : d(x,A) < δ}

be the open δ-neighbourhood of A, and let Ln be the Lebesgue measure in Rn.

Definition 1.1. The lower Minkowski dimension of a bounded set A ⊂ Rn is

dimMA = inf{s > 0 : lim inf
δ→0

δs−nLn(A(δ)) = 0},
1
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and the upper Minkowski dimension of A is

dimMA = inf{s > 0 : lim sup
δ→0

δs−nLn(A(δ)) = 0}.

Let N(A, δ) be the smallest number of balls of radius δ needed to cover A. Then

dimMA = lim inf
δ→0

logN(A, δ)

log(1/δ)
,

and

dimMA = lim sup
δ→0

logN(A, δ)

log(1/δ)
.

We have also that
dimA ≤ dimMA ≤ dimMA.

Minkowski dimensions are also called box counting dimensions. They are not
countably stable. For example the countable compact set {0, 1, 1/2, 1/3, . . . } has
positive Minkowski dimensions although every singleton has 0.

Definition 1.2. The packing dimension of A ⊂ Rn is

dimP A = inf{sup
j

dimMAj : A =
∞⋃
j=1

Aj, Aj is bounded}.

Then
dimA ≤ dimP A ≤ dimMA.

Packing dimension is countably stable.
A closed set F is called Ahlfors-David regular, or AD-regular if for some positive

numbers s and C,

rs/C ≤ Hs(F ∩B(x, r)) ≤ Crs for x ∈ F, 0 < r < d(F ).

Then all the above dimensions of F agree and equal s.
For 0 < d < 1/2 we define the Cantor set with dissection ratio d by the usual

process: Let I = [0, 1]. Delete from the middle of I an open interval of length
1 − 2d and denote by I1,1 and I1,2 the two remaining intervals of length d. Next
delete from the middle of each I1,j an open interval of length (1−2d)d and denote
by I2,i, i = 1, 2, 3, 4, all the four remaining intervals of length d2. Continuing this
we have after k steps 2k closed intervals Ik,i, i = 1, . . . , 2k, of length dk. Define

Cd =
∞⋂
k=1

2k⋃
i=1

Ik,i.

Let µd be the ’natural’ probability measure on Cd. This is the unique Borel mea-
sure µd ∈M(Cd) which is uniformly distributed in the sense that

(1.1) µd(Ik,i) = 2−k for i = 1, . . . , 2k, k = 1, 2 . . . .
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The uniqueness follows easily by, for example, checking that this condition fixes
the values of integrals of continuous functions. The existence can be verified by
showing (easily) that the probability measures

(2d)−k
2k∑
i=1

L1 Ik,i

converge weakly as k → ∞ to such a uniformly distributed measure µd. Here,
and later µ A means the restriction of the measure µ to a set A, which is defined
by

µ A(B) = µ(A ∩B).

Define
sd = log 2/ log(1/d), that is, 2dsd = 1.

Notice that then

µd(Ik,i) = d(Ik,i)
sd for i = 1, . . . , 2k, k = 1, 2 . . . ,

which easily yields with some positive constants a and b,

(1.2) arsd ≤ µd([x− r, x+ r]) ≤ brsd for x ∈ Cd, 0 < r < 1.

Using µd we can now check that

0 < Hsd(Cd) ≤ 1 and dimCd = sd,

and Cd is AD-regular. The upper boundHsd(Cd) ≤ 1 is trivial since

2k∑
i=1

d(Ik,i)
sd = 2k(dk)sd = 1

for all k. To prove thatHsd(Cd) > 0 it is enough by Frostman’s lemma (see below)
to show that µd(J) . d(J)sd for every open interval J ⊂ R. To prove this we may
assume that J ⊂ [0, 1] and Cd ∩ J 6= ∅. Let Il,j be the largest (or one of them)
of all the intervals Ik,i contained in J . Then J ∩ Cd is contained in four intervals
Il,j1 = Il,j1 , . . . , Il,j4 , whence

µd(J) ≤ 4µd(Il,j) = 4d(Il,j)
sd ≤ 4d(J)sd ,

and soHsd(Cd) > 0.
By a modification of the above argument one can show that in fact

Hsd Cd = µd and Hsd(Cd) = 1.

For A ⊂ Rn, letM(A) be the set of Borel measures µ such that 0 < µ(A) < ∞
and µ(Rn \ A) = 0.

Theorem 1.3. [Frostman’s lemma]
Let 0 ≤ s ≤ n. For a closed set A ⊂ Rn,Hs(A) > 0 if and only there is µ ∈ M(A)
such that

(1.3) µ(B(x, r)) ≤ rs for all x ∈ Rn, r > 0.
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In particular,

dimA = sup{s : there is µ ∈M(A) such that (1.3) holds}.

The s-energy, s > 0, of a Borel measure µ is

Is(µ) =

∫∫
|x− y|−s dµx dµy =

∫
ks ∗ µ dµ,

where ks is the Riesz kernel:

ks(x) = |x|−s, x ∈ Rn.

If µ has compact support, sptµ, we have trivially,

Is(µ) <∞ implies It(µ) <∞ for 0 < t < s.

We can quite easily relate the energies to the Frostman condition using the stan-
dard formula ∫

|x− y|−s dµy = s

∫ ∞
0

µ(B(x, r))

rs+1
dr.

This immediately gives that if µ ∈M(Rn) satisfies (1.3), then for 0 < t < s,

It(µ) ≤ t

∫∫ d(sptµ)

0

µ(B(x, r))

rt+1
dr dµx ≤ tµ(Rn)

∫ d(sptµ)

0

rs−t−1 dr <∞.

On the other hand, if Is(µ) <∞, then
∫
|x− y|−s dµx <∞ for µ almost all x ∈ Rn

and we can find 0 < M < ∞ such that the set A = {x :
∫
|x− y|−s dµx < M} has

positive µ measure. Then one checks easily that (µ A)(B(x, r)) ≤ 2sMrs for all
x ∈ Rn, r > 0. This gives

Theorem 1.4. For a closed set A ⊂ Rn,

dimA = sup{s : there is µ ∈M(A) such that Is(µ) <∞}.

These two theorems hold also for Borel sets A, but the proof for closed sets is
easier.

Let us look at a few easy examples:

Example 1.5. (i) Let µ = L1 [0, 1]. Then dim[0, 1] = 1, µ ∈ M([0, 1]) and
Is(µ) <∞ if and only s < 1. Similarly, if A ⊂ Rn is Lebesgue measurable
and bounded with Ln(A) > 0 and µ = Ln A, then Is(µ) <∞ if and only
s < n.

(ii) Let µ = H1 Γ where Γ is a rectifiable curve. Again Is(µ) <∞ if and only
s < 1.

(iii) Let µd as above be the natural measure on the Cantor set Cd, that is, µd =

Hsd C where s0 = log 2/ log(1/d) is the Hausdorff dimension of C. Then
Is(µ) <∞ if and only s < sd.
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The proof of Frostman’s lemma is based on weak convergence of measures:

Definition 1.6. The sequence (µj) of Borel measures on Rn converges weakly to a
Borel measure µ if for all ϕ ∈ C0(Rn),∫

ϕdµj →
∫
ϕdµ.

Here C0(Rn) is the space of continuous functions ϕ : Rn → R which vanish
outside some compact set, that is their support

spt f = closure({x : f(x) 6= 0})
is compact.

The weak convergence does not imply that µj(A) would convergence to µ(A)
for all setsA, not even for all closed setsA. To see this consider the Dirac measures
at points a: δa(A) = 1, if a ∈ A, and δa(A) = 0, if a 6∈ A. Then δaj → δa if aj → a,
but δaj({a}) = 0 6= 1 = δa({a}) for all j if aj 6= a for all j.

The following weak compactness theorem is very important. It follows from
the separability of the space C0(Rn), which means that there is a sequence ϕj, j =
1, 2, . . . which is dense under the norm ‖ϕ‖ = supx∈Rn |ϕ(x)|. In addition one
needs the Riesz represention theorem which identifies positive linear functionals
with Borel measures. More precisely, if L : C0(Rn)→ R is linear and it is positive
in the sense that

Lf ≥ 0 whenever f ∈ C0(Rn) with f ≥ 0,

then there is a locally finite (finite for compact sets) Borel measure µ such that

Lf =

∫
f dµ for f ∈ C0(Rn).

Theorem 1.7. Any sequence (µj) of Borel measures on Rn such that supj µj(Rn) <
∞ has a weakly converging subsequence.

We shall not prove these results in the course but the proofs can be found in
many measure theory and functional analysis books.

Here is a sketch of the proof of the more essential direction of Frostman’s
lemma. Assume Hs(A) > 0. We may assume that A is compact. Then there is
c > 0 such that

(1.4)
∑
j

d(Ej)
s ≥ c

for all coverings Ej, j = 1, 2, . . . , of A. We construct the measure µ as a weak limit
of measures µk. To define µk look at the dyadic cubes of side-length 2−k in a stan-
dard cubical partitioning of Rn. First we define a measure µk,1 which is a constant
multiple of Lebesgue measure on each such cube Q. For Q such that A ∩ Q 6= ∅,
we normalize Lebesgue measure on Q so that µk,1(Q) = d(Q)s and for the cubes
Q such that A∩Q = ∅ we let µk,1 be the zero measure on Q. This measure would
be fine for balls with diameter < 2−k but not necessarily for the bigger balls. Thus
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we modify it to a measure µk,2 by investigating the dyadic cubes of side-length
21−k. On each such cube Q we let µk,2 be µk,1 if µk,1(Q) ≤ d(Q)s, otherwise we
make it smaller by normalizing µk,1 on Q so that µk,2(Q) = d(Q)s. We continue
this until we come to a single cube Q0 which contains our compact set A (we may
assume to begin with that the dyadic partioning is chosen so thatA is inside some
cube belonging to it). Let µk be the final measure obtained in this way. Then, since
we never increased the measure along the process, µk(Q) ≤ d(Q)s for all dyadic
cubes with side-length at least 2−k. In fact, this holds for all dyadic cubes by the
first step of the construction. This implies easily that µk(B) .n d(B)s for all balls
B. The construction yields that every x ∈ A is contained in some dyadic subcube
Q of Q0 with side-length at least 2−k such that

µk(Q) = d(Q)s.

Choosing maximal, and hence disjoint, such cubes Qj , they cover A and thus by
(1.4),

(1.5) µk(Rn) =
∑
j

µk(Qj) =
∑
j

d(Qj)
s ≥ c.

We can now take some weakly converging subsequence of (µk) and consider
the limit measure µ. Then it is immediate from the construction that sptµ ⊂ A
(here we use that A is compact). It is also clear that µ(B) .n d(B)s for all balls
B. The only danger is that µ might be the zero measure, but (1.5) shows that this
cannot happen.

When studying measures in Rn, or in more general metric spaces, a very useful
tool is the following 5r-covering lemma.

Its proof can be found in [Ma], Chapter 2. We denote by tB the ball B(x, tr)
when B = B(x, r) and t > 0.

Theorem 1.8. [5r covering theorem] Let B be a family of closed balls in Rn with

sup{d(B) : B ∈ B} <∞.
Then there are disjoint balls Bi ∈ B (countably or finitely many) such that⋃

B∈B

B ⊂
⋃
i

5Bi.

For instance this can be used to prove the equivalence of the definitions for
Minkowski dimensions in terms of N(A, δ) and Lebesgue measures of A(δ), and
for the equality for different dimensions for AD-regular sets.

2. PROJECTIONS AND DIMENSION

Let us begin by considering Cantor sets in the plane. Set

C(d) = Cd × Cd, 0 < d < 1/2,

where Cd ⊂ [0, 1] is the Cantor set of the previous chapter.
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This is often called a four-corner Cantor set because of the geometric construc-
tion:

(2.1) C(d) =
∞⋂
k=1

Ud
k , Ud

k =
4k⋃
i=1

Qk,i.

Here eachQk,i is a closed square of side-length dk, and they are defined as follows.
First theQ1,i are the four squares in the four corners of the unit square [0, 1]×[0, 1],
that is, [0, d] × [0, d], [0, d] × [1 − d, 1], [1 − d, 1] × [0, d] and [1 − d, 1] × [1 − d, 1]. If
the squares Qk,i, i = 1, . . . , 4k, have been constructed, the Qk+1,j are obtained in
the same way inside and in the corners of the Qk,i.

Defining sd by

4dsd = 1, i.e., sd =
log 4

log(1
d
)
,

we have
0 < Hsd(C(d)) <∞ and dimC(d) = sd.

This is derived directly from (2.1), for example as in Chapter 1 for the linear
Cantor sets Cd.

We shall consider how the projections

pθ(x, y) = x cos θ + y sin θ, (x, y) ∈ R2, θ ∈ [0, π),

affect the dimension of these and more general sets. Notice that pθ is essentially
the orthogonal projection onto line making angle θ with the x-axis. We notice
immediately that when θ = 0 or θ = π

2
, that is, when we project into the coor-

dinate axis, we get the Cantor sets Cd whose dimension is log 2

log( 1
d

)
= 1

2
sd. Looking

more carefully at these projections with different angles θ we easily find a count-
able dense set of angles θ for which pθ(C(d)) is a Cantor set in R with dimension
strictly less than sd. This happens always when pθ maps two different squaresQk,i

exactly onto the same interval. However, this behaviour is exceptional due to
Marstrand’s general projection theorem which we shall soon prove.

The first observation is that projections cannot increase dimensions, simply be-
cause they do not increase distances. More generally,

Theorem 2.1. Let f : Rn → Rm be a Lipschitz mapping. This means that there is
L <∞ such that

|f(x)− f(y)| ≤ L|x− y| for all x, y ∈ Rn.

Then for any A ⊂ Rn and s ≥ 0,

(2.2) Hs(f(A)) ≤ LsHs(A) and dim f(A) ≤ dimA.

In addition to sets we also need to project measures. More generally, the image
or push-forward of a measure µ under a map f : Rn → Rm is defined by

f]µ(B) = µ(f−1(B)) for B ⊂ Rm.
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It is a Borel measure if µ is a Borel measure and f is a Borel function. The defini-
tion is equivalent to saying that∫

g df]µ =

∫
g ◦ f dµ

for all non-negative Borel functions g on Rn.
Finally, we need something from the differentation theory of measures. First,

we say that a measure µ is absolutely continuous with respect to a measure ν if
ν(A) = 0 implies µ(A) = 0. We denote this by µ� ν.

For µ ∈M(Rn) define the lower derivative and derivative of µ at x ∈ Rn by

D(µ, x) = lim inf
r→0

µ(B(x, r))

Ln(B(x, r))

and
D(µ, x) = lim

r→0

µ(B(x, r))

Ln(B(x, r))
,

the latter if the limit exists. We shall make use of the following basic differentia-
tion theorem of measures, for a proof, see, e.g., [Ma], Theorem 2.12:

Theorem 2.2. Let µ ∈M(Rn). Then
(a) the derivative D(µ, x) exists and is finite for Ln almost all x ∈ Rn,

(b)
∫
B
D(µ, x) dx ≤ µ(B) for all Borel sets B ⊂ Rn with equality if µ� Ln,

(c) µ� Ln if and only if D(µ, x) <∞ for µ almost all x ∈ Rn.

Actually we shall only need part (c) and only the "if" part there. The book [BP]
gives a simple proof for it in Section 3.5.

Part (b) is the Radon-Nikodym theorem in this case: when µ � Ln, we have∫
B
D(µ, x) dx = µ(B) for all Borel sets B ⊂ Rn, and so µ can be identified with the

function D(µ, ·).
Now we come to the projection theorem which John Marstrand proved in 1954,

I state it for Borel sets, but stating only for closed sets would be about the same.

Theorem 2.3. Let A ⊂ R2 be a Borel set. If dimA ≤ 1, then

(2.3) dim pθ(A) = dimA for almost all θ ∈ [0, π).

If dimA > 1, then

(2.4) L1(pθ(A)) > 0 for almost all θ ∈ [0, π).

Proof. To prove (2.3) let 0 < s < dimA ≤ 1 and choose by Theorem 1.4 a measure
µ ∈ M(A) such that Is(µ) < ∞. Let µθ ∈ M(pθ(A)) be the image of µ under pθ:
µθ(B) = µ(p−1

θ (B)). Then∫ π

0

Is(µθ) dθ =

∫ π

0

∫∫
|pθ(x− y)|−s dµx dµy dθ

=

∫∫∫ π

0

|pθ( x−y
|x−y|)|

−s dθ|x− y|−s dµx dµy = c(s)Is(µ) <∞,
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where for v ∈ S1, c(s) =
∫ π

0
|pθv|−s dθ < ∞ as s < 1. Referring again to Theorem

1.4 we see that dim pθ(A) ≥ s for almost all θ ∈ [0, π). By the arbitrariness of s, 0 <
s < dimA, we obtain dim pθ(A) ≥ dimA for almost all θ ∈ [0, π). The opposite
inequality follows from the fact that the projections are Lipschitz mappings.

To prove (2.4) let dimA > 1 and choose by Theorem 1.4 a measure µ ∈ M(A)
such that I1(µ) <∞. Let µθ ∈M(pθ(A)) be as above. Then by Fatou’s lemma and
Fubini’s theorem∫ π

0

∫
D(µθ, u) dµθu dθ

≤ lim inf
r→0

∫ π

0

∫
µθ(B(u, r))

2r
dµθu dθ

= lim inf
r→0

1

2r

∫ π

0

∫
µ({y : |pθ(x− y)| ≤ r}) dµx dθ

= lim inf
r→0

1

2r

∫∫
L1({θ : |pθ(x− y)| ≤ r}) dµy dµx

≤ I1(µ).

Here used here the elementary geometric (or analytic) fact L1({θ : |pθ(v)| ≤ r}) ≤
2r when |v| = 1, which implies L1({θ : |pθ(x − y)| ≤ 2r}) ≤ 2/|x − y| for all
x, y ∈ R2. It follows that for almost all θ ∈ [0, π), D(µθ, u) <∞ for µθ almost all u.
For such θ, µ� L1 by Theorem 2.2. (2.4) follows from this. �

We return to to the Cantor sets C(d). We now know the dimension of pθ(C(d))
for almost all θ ∈ [0, π). In the case d = 1/4, dim pθ(C(1/4)) = 1 for almost all
θ ∈ [0, π). But what can we say about the Lebesgue one-dimensional measures
of these one-dimensional (in the sense of Hausdorff) subsets of R? Here is the
answer:

Theorem 2.4.
L1(pθ(C(1/4))) = 0 for almost all θ ∈ [0, π).

The following elementary proof is due to Peres, Simon and Solomyak. It is also
given in the book [BP] of Bishop and Peres.

R. Kenyon has proven a sharper result, which in particular implies that there
are only countably many directions θ for which L1(pθ(C(d))) > 0 and that the set
of such directions is countably infinite and dense.

Set now C = C(1/4). We can write

C =
4⋃
i=1

(
1

4
C + ci

)
where c1 = (0, 0), c2 =

(
3
4
, 0
)
, c3 =

(
0, 3

4

)
, c4 =

(
3
4
, 3

4

)
. Hence, writing again

θ = (cos θ, sin θ),

pθ(C) =
4⋃
i=1

(
1

4
pθ(C) + θ · ci

)
⊂ R.
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Let us first look more generally at this type of self-similar subsets of R. Let
K ⊂ R be compact such that for some integer m ≥ 2 and some d1, . . . , dm ∈ R
(di 6= dj for i 6= j),

K =
m⋃
i=1

Ki with Ki =
1

m
K + di.

Lemma 2.5. (1) L1(Ki ∩Kj) = 0 for i 6= j.
(2) Ki ∩Kj 6= ∅ for some i 6= j.

Proof. (1) follows easily from

L1(K) ≤
m∑
i=1

L1(Ki) =
m∑
i=1

1

m
L1(K) = L1(K).

If Ki ∩ Kj = ∅ for all i 6= j, then for some ε > 0 the open ε-neighbourhoods
Ki(ε) of the Ki are also disjoint. The ε-neighbourhood of Ki = 1

m
K + di is

( 1
m
K)(ε) + di = 1

m
K(mε) + di, whence

L1(Ki(ε)) = L1(
1

m
K(mε)) =

1

m
L1(K(mε)).

It follows that

L1(K(ε)) =
m∑
i=1

L1(Ki(ε)) =
m∑
i=1

1

m
L1(K(mε)) = L1(K(mε)).

This is a contradiction, sinceK(ε) is a strict subset ofK(mε) and both are bounded
open sets. �

Since

Ki =
1

m
K + di =

1

m

(
m⋃
j=1

(
1

m
K + dj

))
+ di =

m⋃
j=1

Ki,j,

where Kij = 1
m2K + 1

m
dj + di, we can write K also as the union of the m2 sets Kij .

Set

I = {1, . . . ,m},

Ik = {u : u = (i1, . . . , ik), ij ∈ I}, k = 1, 2, . . . .

Then for each k,

K =
⋃
u∈Ik

Ku, where Ku = m−kK + du.

The the translation numbers Ku were defined above for k = 1, 2, and the general
case should be clear from this.

The following notion is due to C. Bandt and S. Graf.

Definition 2.6. Let ε > 0. We say that Ku and Kv are ε-relatively close if u, v ∈ Ik
for some k, u 6= v, and

|du − dv| ≤ εd(Ku) = εd(K)m−k.
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Observe that this means that

Kv = Ku + x

with x = dv − du and |x| ≤ εd(Ku).

Lemma 2.7. If for every ε > 0 there are k and u, v ∈ Ik with u 6= v such that Ku

and Kv are ε-relatively close, then L1(K) = 0.

Proof. To prove this suppose L1(K) > 0 and let 1/2 < t < 1. Then there is some
interval I such that L1(K∩I) > tL1(I). Pick small ε > 0 and Ku and Kv, u, v ∈ Ik,
u 6= v, which are ε-relatively close. By an iteration of Lemma 2.5(1) L1(Ku ∩
Kv) = 0. Setting Iu = m−kI + du and Iv = m−kI + dv, L1(Ku ∩ Iu) > tL1(Iu),
L1(Kv ∩ Iv) > tL1(Iv) and L1(Iv \ Iu) ≤ εd(K)m−k. It follows that

2tm−kL1(I) = tL1(Iu) + tL1(Iv)

≤ L1(Ku ∩ Iu) + L1(Kv ∩ Iv) = L1((Ku ∩ Iu) ∪ (Kv ∩ Iv))
≤ L1(Iu) + L1(Iv \ Iu) ≤ (L1(I) + εd(K))m−k.

This is a contradiction if ε is sufficiently small. �

Proof of Theorem 2.4. We now return to the proof that L1(pθ(C)) = 0 for almost
all θ. Let pθ(C) = Cθ to fit more conveniently with the notation Cθ

u above. For
ε > 0 let

Vε = {θ ∈ [0, π) :∃ k, u, v such that u, v ∈ Ik, u 6= v

and Cθ
u and Cθ

v are ε-relatively close}.
It follows from Lemma 2.7 that it suffices to show that for every ε > 0,

L1([0, π)\Vε) = 0.

Then also L1([0, π)\
⋂
ε>0

Vε) = L1([0, π)\
∞⋂
j=1

V 1
j
) = 0. So let ε > 0 and θ ∈ [0, π). By

Lemma 2.5(2), Cθ
i ∩ Cθ

j 6= ∅ for some i 6= j. This means that there are x ∈ Ci and
y ∈ Cj such that pθx = pθy. Let k > 1 be an integer. Then x ∈ Cu and y ∈ Cv for
some u, v ∈ Ik with u 6= v. Let θ0 ∈ [0, π) be such that pθ0(Cu) = pθ0(Cv) (that is,
pθ0 maps the squares of side-length 4−k which contain Cu and Cv onto the same
interval). Then |θ − θ0| < c4−k with some constant c > 1. Moreover, Cθ0

u and Cθ0
v

are ’0-relatively close’, and a simple geometric inspection shows that Cϕ
u and Cϕ

v

are ε-relatively close when |ϕ − θ0| < bε4−k, where b < 1 is a constant. Hence
[θ− 2c4−k, θ+ 2c4−k]∩Vε contains an interval of length bε4−k. Since this is true for
every k, it follows that L1([0, π)\Vε) = 0 as required. �

Since L1(pθ(C(1/4))) = 0 for almost all θ ∈ (0, π), the integrals, the average
length of projections,

Ik :=

∫ π

0

L1(pθ(U
1/4
k )) dθ

tend to 0 when k tends to∞; recall the definition of U
1
4 from (2.1). But how fast

do they converge? To get a lower bound, we first prove a general result:
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Theorem 2.8. LetA ⊂ R2 be Lebesgue measurable and let µ ∈M(A) with µ(A) =
1 and I1(µ) <∞. Then ∫ π

0

L1(πθ(A)) dθ ≥ π2

I1(µ)
.

Proof. The measurability of the function θ 7→ L1(Pθ(A)) is easily checked for com-
pact sets A and from that it follows for measurable sets by approximation. The
argument in the proof of (2.4) shows that for almost all θ ∈ [0, π) the measure µθ is
absolutely continuous and the derivativeD(µθ, ·) is in L2. This means that we can
consider µθ as an L2 function, identifying it with D(µθ, ·). Moreover, that proof
gives ∫ π

0

∫
µθ(u)2 du dθ ≤ I1(µ).

By Schwartz’s inequality,

1 = µθ(R)2 =

(∫
πθ(A)

µθ(u) du

)2

≤ L1(πθ(A))

∫
µθ(u)2 du.

A combination of these two inequalities gives∫ π

0

L1(πθ(A))−1 dθ ≤
∫ π

0

∫
µθ(u)2 du dθ ≤ I1(µ).

Thus by Schwartz’s inequality,∫ π

0

L1(πθ(A)) dθ ≥
(∫ π

0

L1(πθ(A))−1 dθ

)−1

π2 ≥ π2I1(µ)−1.

�

Theorem 2.8 gives easily the lower bound

(2.5)
∫ π

0

L1(pθ(U
1/4
k )) dθ & k−1.

To prove this it is enough to check that I1(µk) . k when µk is the normalized
Lebesgue measure on U1/4

k and then apply Theorem 2.8. M. Bateman and A. Vol-
berg have improved this to

(2.6)
∫ π

0

L1(pθ(U
1/4
k )) dθ & (log k)k−1.

Getting good upper bounds has turned out to be a very difficult problem. F.
Nazarov, Y. Peres and A. Volberg proved in 2010 with delicate Fourier analytic
and combinatorial arguments that for every δ > 0,

(2.7)
∫ π

0

L1(pθ(U
1/4
k )) dθ .δ k

δ−1/6.
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3. BESICOVITCH SETS

We say that a Borel set in Rn, n ≥ 2, is a Besicovitch set, or a Kakeya set, if it
has zero Lebesgue measure and it contains a line segment of unit length in every
direction. This means that for every e ∈ Sn−1 = {x ∈ Rn : |x| = 1} there is b ∈ Rn

such that {te + b : 0 < t < 1} ⊂ B. It is not clear that Besicovitch sets exist but
they do in every Rn, n ≥ 2, as we shall now prove. We shall also show that in the
plane their Hausdorff dimension is 2.

We show that Besicovitch sets exist using duality between points and lines.

Theorem 3.1. For any n ≥ 2 there exists a Borel set B ⊂ Rn such that Ln(B) = 0
and B contains a whole line in every direction. Moreover, there exist compact
Besicovitch sets in Rn.

Proof. It is enough to findB in the plane since then we can takeB×Rn−2 in higher
dimensions.

Let C ⊂ R2 be a compact set such that π(C) = [0, 1], where π(x, y) = x for
(x, y) ∈ R2, and L1(pθ(C)) = 0 for L1 almost all θ ∈ [0, π). Here pθ is again the
projection onto the line through the origin forming angle θ with the x-axis. We
can take as C a suitably rotated and dilated copy of C(1/4) or we can modify the
construction of C(1/4) by placing the first four disjoint closed squares of side-
length 1

4
inside [0, 1]× [0, 1] so that their projections cover [0, 1]. Consider the lines

`(a, b) = {(x, y) : y = ax+ b}, (a, b) ∈ C,
and define B as their union:

B =
⋃

(a,b)∈C

`(a, b) = {(x, ax+ b) : x ∈ R, (a, b) ∈ C}.

From the latter representation it is easy to see that B is σ-compact and hence a
Borel set. If we restrict x to [0, 1], B will be compact, which will give us compact
Besicovitch sets. Since π(C) = [0, 1], B contains a line `(a, b) for some b for all
0 ≤ a ≤ 1. Taking a union of four rotated copies of B we get a Borel set that
contains a line in every direction. It remains to show that L2(B) = 0.

We do this by showing that almost every vertical line meets B in a set of length
zero and then using Fubini’s theorem. For any t ∈ R,

B ∩ {(x, y) : x = t} = {(t, at+ b) : (a, b) ∈ C}

= {t} × πt(C),
(3.1)

where πt(x, y) = tx + y. The map πt is essentially a projection pθ for some θ, and
hence we have L1(πt(C)) = 0 for L1 almost all t ∈ R. Thus L2(B) = 0. �

Reversing the above argument, we now use Marstrand’s projection theorem to
prove that Besicovitch sets must have Hausdorff dimension 2 in the plane.

Theorem 3.2. For every Besicovitch set B ⊂ R2, dimB = 2.

Proof. If B is a Besicovitch set, then B is contained in a Gδ (countable intersection
of open sets) set B′ which contains a unit line segment in every direction and for
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which dimB′ = dimB. Thus we can assume that B is a Gδ Besicovitch set in
the plane. For a ∈ (0, 1), b ∈ R and q ∈ Q denote by I(a, b, q) the line segment
{(q + t, at + b) : 0 ≤ t ≤ 1/2} of length less than 1. Let Cq be the set of (a, b) such
that I(a, b, q) ⊂ B and C = ∪q∈QI(a, b, q). Then each Cq is a Gδ-set, because for
any open set G, the set of (a, b) such that I(a, b, q) ⊂ G is open. Since for every
a ∈ (0, 1), some I(a, b, q) ⊂ B, we have π(∪q∈QCq) = (0, 1), with π(x, y) = x, and
so there is q ∈ Q for whichH1(Cq) > 0. Then by Theorem 2.3, for almost all t ∈ R,
dim πt(Cq) = 1, where again πt(x, y) = tx+ y. We have now for 0 ≤ t ≤ 1/2,

{q + t} × πt(Cq) = {(q + t, at+ b) : (a, b) ∈ Cq} ⊂ B ∩ {(x, y) : x = q + t}.
Hence for a positive measure set of t, vertical t-sections of B have dimension 1.
By a relatively easy property of Hausdorff measures this implies dimB = 2. �

It is conjectured that in Rn, n ≥ 2, the Besicovitch sets have Hausdorff dimen-
sion. This conjecture, called Kakeya conjecture, is open when n ≥ 3. It is related
to many central questions of modern Fourier analysis.
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4. SELF-SIMILAR SETS

This topic is discussed in [BP] and [F1].
Let 0 < d < 1/2 and consider the functions

f1 : R→ R, f1(x) = dx, f2 : R→ R, f2(x) = dx+ 1− d.
Then for the Cantor set Cd of Chapter 1,

Cd = f1(Cd) ∪ f2(Cd).

In Chapter 2 we observed that the Cantor set C(d) in the plane and its projections
satisfy similar equations with four mappings. These are examples of self-similar
sets which we now define and study more generally.

Let (X, d) be a metric space. A mapping f : X → X is called a contraction if
there is 0 < r < 1 such that

d(f(x), f(y)) ≤ rd(x, y) for all x, y ∈ X.

Theorem 4.1. [Banach’s fixed point theorem] If (X, d) is complete and f : X → X
is a contraction, then f has a unique fixed point x0:

f(x0) = x0.

The proof of this standard result can be found in [BP] and many other books.

Definition 4.2. Let fj : X → X, j = 1, . . . , N,N ≥ 2, be contractions. A non-
empty compact subset K of X is called an attractor of fj, j = 1, . . . , N, if

K =
N⋃
j=1

fj(K).

The Cantor sets mentioned above are examples of such attractors. Other ex-
amples can be found for instance in [BP] and [F1]. For example, the Sierpinski
gasket, Sierpinski carpet (Figure 1.3.4 in [BP]) and the top third of the von Koch
snowflake (Figure 1.2.2 in [BP]) can be represented in this form.

In a complete metric space any finite sequence of contractions leads to a unique
attractor due to a theorem of Hutchinson from 1981:

Theorem 4.3. Let (X, d) be a complete metric space and let fj : X → X, j =
1, . . . , N,N ≥ 2, be contractions.

(1) There exists a unique non-empty compact subset K of X such that

K =
N⋃
j=1

fj(K).

(2) If pj ∈ [0, 1] with
∑N

j=1 pj = 1, then there exists a unique Borel probability
measure µ ∈M(K) such that

µ =
N∑
j=1

pjfj#µ.
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If pj > 0 for all j, sptµ = K.
µ is called the invariant measure of the system f1, . . . , fN , p1, . . . , pN .

Both statements can be proven with the help of Banach’s fixed point theorem,
but to do that we need metrics on the spaces of compact subsets of X and proba-
bility measures on X . For the first this is the following:

Definition 4.4. Let (X, d) be a complete metric space and let K(X) be the set of
all non-empty compact subsets of X . Set

dH(K1, K2) = inf{ε : K1 ⊂ K2(ε) and K2 ⊂ K1(ε)},

where Kj(ε) = {x ∈ X : d(x,Kj) < ε}. Then dH is called the Hausdorff metric on
K(X).

The completenes part of the following is called Blaschke’s selection theorem.

Theorem 4.5. (K(X), dH) is a complete metric space.

For the second part of Theorem 4.3 we consider only measures on the compact
set K and we define the metric in this case:

Definition 4.6. Let (K, d) be a compact metric space and let P(K) be the set of all
Borel probability measures on K. Set

dL(µ, ν) = sup{|
∫
g dµ−

∫
g dν| : Lip(g) ≤ 1}, µ, ν ∈ P(K),

where Lip(g) is the Lipschitz constant of g : K → R, that is, the smallest L such
that d(g(x), g(y)) ≤ Ld(x, y) for all x, y ∈ X.. Then dL is called the dual Lipschitz
metric on P(K).

Theorem 4.7. (P(K), dL) is a compact metric space.

The proofs of Theorems 4.5 and 4.7 can be found, for example, in [BP].
Theorem 4.3 is now proved combining Banach’s fixed point theorem with these

two theorems. For that we need to use suitable contractions on (K(X), dH) and
(P(K), dL). But these are obvious:

F : K(X)→ K(X), F (K) =
N⋃
j=1

fj(K),

M : P(K)→ P(K),M(µ) =
N∑
j=1

pjfj#µ.

Then one shows that these mappings really are contractions, which completes the
proof of Theorem 4.3.

Now we go to Rn. A contraction f : Rn → Rn is a similitude (or a contractive
similarity) if there is 0 < r < 1 such that

|f(x)− f(y)| = r|x− y| for all x, y ∈ Rn.
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It can be shown that this means that f is of the form

f(x) = rg(x) + a, x ∈ Rn, for some g ∈ O(n), a ∈ Rn.

In particular, f is an affine mapping (linear + translation).
The number r is called the contraction ratio of f , we denote it by r(f).

Definition 4.8. A non-empty compact subset K of Rn is called self-similar, if it
is the (unique) attractor of some system f1, . . . , fN , N ≥ 2, of similitudes on Rn:
K =

⋃N
j=1 fj(K).

Notice that K does not determine uniquely the similitudes f1, . . . , fN .
What can we say about the Hausdorff dimension and measures of self-similar

sets? What helped us for the earlier Cantor sets was that the different parts fj(K)

were disjoint. Suppose K =
⋃N
j=1 fj(K) is a self-similar set with fj(K) pairwise

disjoint and 0 < Hs(K) <∞. Then

0 < Hs(K) =
N∑
j=1

Hs(fj(K)) =
N∑
j=1

r(fj)
sHs(K) <∞.

Hence
∑N

j=1 r(fj)
s = 1. Conversely, given any similitudes f1, . . . , fN , N ≥ 2,,

there is a unique number s, 0 < s < 1, such that
∑N

j=1 r(fj)
s = 1. This number is

called the similarity dimension of the system f1, . . . , fN . Now one could hope that
this always would give the Hausdorff dimension of the self-similar attractor of
this system, but this is not true. However, it is true if the different parts fj(K)
are disjoint, and more generally under the following open set condition. This
condition is very useful. For example, it applies to the von Koch curve and the
Sierpinski gasket, although the fj(K) are not disjoint.

Definition 4.9. We say that the similitudes f1, . . . , fN , N ≥ 2, on Rn satisfy the
open set condition, or OSC, if there is a non-empty bounded open set O ⊂ Rn such
that

fj(O) ⊂ O for all j = 1, . . . , N, and fj(O) ∩ fk(O) = ∅ for all j 6= k.

The following theorem was proved by Moran in the 1940s, and in this formu-
lation by Hutchinson in 1981:

Theorem 4.10. Suppose that the similitudes f1, . . . , fN , N ≥ 2, satisfy the open
set condition, let s be the similarity dimension of this system and let K be the
corresponding self-similar set. Then 0 < Hs(K) <∞.

The proof of this can be found in [BP] and [F1].
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5. DIMENSION OF SOME SETS OF REAL NUMBERS

These lectures follow parts of Sections 1.3-5 of [BP].
The standard Cantor set C1/3 can be written as

C1/3 = {
∞∑
j=1

xj3
−j : xj = 0 or xj = 2}.

We begin by studying sets of this type. Let b ≥ 2 be an integer. For any x ∈ [0, 1]
we have the b-adic expansion

x =
∞∑
j=1

xjb
−j,

where xj ∈ {0, 1, . . . , b− 1}. If we don’t allow xj to have all those possible values,
we can have some interesting fractal sets. For example, choosing a subset S of
{0, 1, . . . , b − 1} of m < b elements, the set of all x as above with xj ∈ S form a
self-similar Cantor set of dimension logm/ log b.

Here is a bit more complicated example: let S ⊂ N = {1, 2, . . . } and define

(5.1) AS = {
∞∑
j=1

xj2
−j : xj = 0 or xj = 1, if j ∈ S, and xj = 0, if j 6∈ S}.

We shall soon find Minkowski and Hausdorff dimensions of AS . Minkowski is
rather easy. For any S ⊂ N, define the upper density of S as

d(S) = lim sup
N→∞

#(S ∩ {1, . . . , N})
N

,

and the lower density

d(S) = lim sup
N→∞

#(S ∩ {1, . . . , N})
N

.

Then
dimMAS = d(S),

and
dimMAS = d(S).

We shall show that d(S) also equals the Hausdorff dimension of AS . For this
and other related sets b-adic Hausdorff measures H̃s are useful. They are defined
just as the ordinary Hausdorff measures but instead of covering with arbitrary
sets we cover with b-adic intervals. By a b-adic interval we mean any half-open
interval of the form

[
k − 1

bm
,
k

bm
), k ∈ Z,m ∈ N.

Thus
H̃s(A) = lim

δ→0
H̃s
δ(A),
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where, for 0 < δ ≤ ∞,

H̃s
δ(A) = inf{

∑
j

d(Ij)
s : A ⊂

⋃
j

Ij, d(Ij) < δ, Ij a b-adic interval}.

Then
Hs(A) ≤ H̃s(A) ≤ 2bHs(A).

The first inequality is obvious, the second follows since every interval of length
d ≤ 1/b can be covered with 2b b-adic intervals of length at most d.

We also need the following Billingsley’s lemma. In it Ik(x) stands for the unique
b-adic interval of length b−k containing x.

Lemma 5.1. Let A ⊂ [0, 1] be a Borel set and let µ ∈M([0, 1]) with µ(A) > 0. If

α ≤ lim inf
k→∞

log µ(Ik(x))

log d(Ik(x))
≤ β for all x ∈ A,

then α ≤ dimA ≤ β.

With these tools it is rather easy to show for the set AS of (5.1) that

dimAS = d(S).

Next we study sets defined by their digit frequencies. For 0 < p < 1, set

Ap = {
∞∑
j=1

xj2
−j : xj = 0 or xj = 1 and lim

k→∞

1

k

k∑
j=1

xj = p}.

Then

(5.2) dimAp = h2(p) := (−p log p− (1− p) log(1− p))/ log 2.

In addition to Billigsley’s lemma we need for this a probabilistic result:

Theorem 5.2 (Strong law of large numbers). Let (X, ν) be a probability space (a
measure space with ν(X) = 1). Let (fj) be an orthogonal sequence in L2(X, ν):∫

fifj dν = 0 for all i 6= j.

If
∫
|fj|2 dν ≤ 1 for all j ∈ N, then

lim
k→∞

1

k

k∑
j=1

fj(x) = 0 for ν almost all x ∈ X.

In order to use these tools to verify (5.2) we still need a measure. It can be
defined like the Cantor measure µd. Let µ1 give the measure 1 − p for [0, 1/2)
and p for [1/2, 1). Next let µ2 give the measure (1 − p)2 for [0, 1/4), p(1 − p) for
[1/4, 1/2), (1 − p)p for [1/2, 3/4) and p2 for [3/4, 1), and so on. The weak limit µp
of this sequence is the desired measure. It satisfies for k = 1, . . . , 2m,m ∈ N,

µp

(
[
k − 1

2m
,
k

2m
)

)
= pn(k)(1− p)m−n(k),

where n(k) is the number of 1s in the binary expression of k.



20 PERTTI MATTILA

6. GRAPHS OF CONTINUOUS FUNCTIONS

This chapter is based on [BP], Chapter 5, see also [F1], Section 8.2, and [F2],
Chapter 11.

The graph of a function f : X → Y is

Gf = {(x, y) : x ∈ X, y = f(x)}.

If f : [a, b] → R is smooth, or just Lipschitz, then H1(Gf ) < ∞ and dimGf = 1.
What about more irregular functions? We study mainly functions on intervals
I ⊂ R, although many results could easily be generalized to higher dimensions.

Definition 6.1. A mapping f : A→ Rm, A ⊂ Rn, is Hölder of order α, 0 < α ≤ 1, if
there is C <∞ such that

|f(x)− f(y)| ≤ C|x− y|α for all x, y ∈ A.

Lemma 6.2. If f : A → Rm, A ⊂ Rn, is Hölder of order α with C as in Definition
6.1, then for all s > 0,

Hs/α(f(A)) ≤ Cs/αHs(A) and dim f(A) ≤ dimA/α.

Lemma 6.3. If f : [a, b]→ R a is Hölder of order α, then

dimMGf ≤ 2− α.

Definition 6.4. A function f : I → R, I ⊂ R an interval, satisfies the reverse Hölder
condition of order α, 0 ≤ α ≤ 1, if there is c > 0 such that for any subinterval J ⊂ I
there exist x, y ∈ J , such that

|f(x)− f(y)| ≥ cd(J)α.

Lemma 6.5. If f : [a, b]→ R satisfies the reverse Hölder condition of order α, then

dimMGf ≥ 2− α.

Our main object of study will be the Weierstrass function:

Definition 6.6. The Weierstrass function fα,b with parameters b ∈ N, b ≥ 2, and
α > 0 is defined by

fα,b(x) =
∞∑
n=1

b−nα cos(bnx), x ∈ [−π, π].

We shall discuss the proof of the following theorem:

Theorem 6.7. (i) If 0 < α < 1, fα,b is Hölder of order α.
(ii) If 0 < α ≤ 1, fα,b is nowhere differentiable.

(iii) If 0 < α < 1, fα,b satisfies the reverse Hölder condition of order α.
(iv) If 0 < α < 1, dimMGfα,b = dimMGfα,b = 2− α.
(v) If 0 < α < 1, dimGfα,b > 1.

It is conjectured, but not known, that dimGfα,b = 2− α.
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7. THE UNIQUENESS PROBLEM FOR TRIGONOMETRIC SERIES

We don’t need much of the standard theory of the Fourier series, but for those
who havn’t yet learned it, this is probably the time to learn. Here is a brief sketch,
the details can be found in many books on Fourier analysis. Very nice and quick
presentations are given by

J. Duoandikoetxea, Fourier Analysis, Graduate Studies in Mathematics, Volume
29, 2001, American Mathematical Society,

Y. Katznelson, An Introduction to Harmonic Analysis, Dover Publications, 1968,
1976.

By a trigonometric series we mean any formal series
∑∞

n=−∞ cne
inx, cn ∈ C, x ∈

[0, 2π). Such a trigonometric series is a Fourier series of a function f ∈ L1([0, 2π) if
the coefficients cn are obtained from f by integration:

cn =
1

2π

∫ 2π

0

f(x)e−inx dx := f̂(n), the Fourier coefficient of f.

Not every converging trigonometric series is a Fourier series, but it is if
∑∞

n=−∞ |cn| <
∞, and much more generally.

The convergence of Fourier series is a very difficult question even for continu-
ous 2π-periodic functions, that is, functions f which are continuous on [0, 2π] with
f(0) = f(2π). But the difficulty depends on the kind of convergence we use: the
pointwise, even almost everywhere, is much more difficult than the convergence
in Lp-norms.

In this chapter when we speak about continuous functions on [0, 2π], they will
always be 2π-periodic, and we denote their space by C([0, 2π]) equipped with the
norm ‖f‖ = max{|f(x)| : x ∈ [0, 2π]}. Let us write

SNf(x) =
N∑

n=−N

f̂(n)einx, x ∈ [0, 2π), N ∈ N,

for the N th partial sum of the Fourier series of f ∈ L1([0, 2π). Then using the
formula of the geometric sums for

∑N
n=−N e

iny we obtain

SNf(x) =

∫ 2π

0

f(x− y)DN(y) dy = DN ∗ f(x),

where DN is the Dirichlet kernel,

DNf(x) =
N∑

n=−N

einx =
sin((n+ 1/2)x)

sin(x/2)
.

Here and later all functions on [0, 2π) will be extended to R as 2π-periodic func-
tions.

The Fejér kernel FN is much easier to deal with than the Dirichlet kernel:

FN(x) =
1

N + 1

N∑
n=0

Dnf(x) =
1

N + 1

(
sin((n+ 1)x/2)

sin(x/2)

)2

.
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The first reason is that a sequence (an) converges much more easily in the Cesáro
sense; (a1 + · · · + aN)/N → a, than in the usual sense. Secondly, Fejér’s kernel
behaves much better than Dirichlet’s kernel. It is almost like the functions ϕε
used in standard convolution approximation: for large n it becomes quickly very
small outside [−1/N, 1/N ] and it has integral 1. Thus one can show rather easily
the following theorem:

Theorem 7.1.

‖FN ∗ f − f‖p → 0 as N →∞, if f ∈ Lp([0, 2π)) and 1 ≤ p <∞,
and

FN ∗ f → f uniformly as N →∞, if f is continuous and 2π periodic on [0, 2π].

The Lp norms will always be over the interval [0, 2π].
This has the following corollary. By a trigonometric polynomial we mean any

finite sum
∑N

n=−N cne
inx.

Corollary 7.2. (1) Trigonometric polynomials are dense inLp([0, 2π)), 1 ≤ p <
∞, and in C([0, 2π]).

(2) If f ∈ L1([0, 2π) and f̂(n) = 0 for all n, the f = 0.

The basic exponentials en, en(x) = einx, are obviously orthogonal:
∫ 2π

0
eimxe−inx dx =

0, if m 6= n, while it is 2π, when m = n. Combining this with part (2) of the pre-
vious corollary means that the system en, n ∈ N, is a complete orthogonal system
in the Hilbert space L2([0, 2π)). Then the following theorem follows immediately
from the general, and rather easy, Hilbert space theory.

Theorem 7.3. Let f, g ∈ L2([0, 2π). Then

‖SN ∗ f − f‖2 → 0 as N →∞.
Moreover, we have the Parseval and Plancherel formulas:∫ 2π

0

f(x)g(x) dx =
∞∑

n=−∞

f̂(n)ĝ(n),

‖f‖2
2 =

∞∑
n=−∞

|f̂(n)|2.
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Now we begin the true contents of these lectures: uniqueness of trigonometric
series: when does

∑∞
n=−∞ cne

inx determine the coefficients uniquely?
Classical references for this are
A. Zygmund, Trigonometric Series, volumes I and II, Cambridge University Press,

1959, (the first edition 1935 in Warsaw),
J.–P. Kahane and R. Salem, Ensembles parfaits et séries trigonométriques, 1963, Her-

mann.
A very nice presentation is given in
Alexander S. Kechris, SET THEORY AND UNIQUENESS FOR TRIGONO-

METRIC SERIES, http://www.math.caltech.edu/ kechris/papers/uniqueness.pdf

The first problem is: if a trigonometric series
∑∞

n=−∞ cne
inx converges to 0 for

all x ∈ R, do all the coefficients have to be 0? The answer is ’yes’ and even more

Theorem 7.4. If
∑∞

n=−∞ cne
inx converges to 0 for all x ∈ R \ F for some finite set

F , then cn = 0 for all n.

This is due to Cantor from 1871. Lebesgue extended this to all countable closed
sets in 1903 and Young to all countable sets in 1909.

The second problem is: for which subsets E of [0, 2π) (or of R by periodicity)
is it true that if a trigonometric series

∑∞
n=−∞ cne

inx converges to 0 for all x ∈
[0, 2π) \ E, then cn = 0 for all n?

Sets with this property are called sets of uniqueness, or U-sets. A set which is not
a set of uniqueness is called a set of multipilicity, or M-set.

We now know that finite, and even closed countable, sets are U-sets. The char-
acterizion of sets, even closed sets, of uniqueness is a very difficult problem which
leads to interesting questions of descriptive set theory. Kechris’s article above is
much about this aspect.

To the other direction we have the rather easy result:

Theorem 7.5. If a Lebesgue measurable set E ⊂ [0, 2π) is a U-set, then L1(E) = 0.

Are the Cantor sets Cd, 0 < d < 1/2, which we introduced in Chapter 1, U- or
M-sets? This turns out to be a very interesting question because some of them are
U-sets and some M-sets, but the crucial property determining this is not size (of
d or of the dimension of Cd), but the number theoretic nature of d.

Theorem 7.6. If d = 1/N where N ≥ 3 is an integer, then Cd is a U-set.

More generally,

Theorem 7.7. If 0 < d < 1/2, then Cd is a U-set if an only 1/d is a Pisot number.

A real number θ > 1 is a Pisot number if it is an algebraic integer whose conju-
gates have modulus less than 1. Algebraic integers are special type of algebraic
numbers; they are solutions of polynomial equations with integer coefficients and
with leading coefficient 1. That is, θ is an algebraic integer if there are integers
m0, . . . ,mk−1 such that P (θ) = 0 where P (x) = xk + mk−1x

k−1 + · · · + m0. The
conjugates of θ are the other complex solutions of P (z) = 0.



24 PERTTI MATTILA

There is a characterization of Pisot numbers which brings us closer to trigono-
metric series: A real number θ > 1 is a Pisot number if and only if there exists a
real number λ 6= 0 such that

(7.1)
∞∑
k=0

sin2(λθk) <∞.

Obviously all integers greater than 1 are Pisot numbers. The smallest non-
integral Pisot number is 1.3247 . . . . It is a solution of x3−x−1 = 0. Some quadratic
equations giving Pisot numbers are x2 − x − 1 = 0, which gives the golden ratio
1+
√

5
2

= 1.618034..., and x2 − 2x− 1 = 0, which gives 1 +
√

2 = 2.414214....
The uniqueness and multiplicity is closely related to the behaviour of Fourier

transforms of measures on the set under consideration. The Fourier transform of a
finite Borel measure µ ∈M(R) is by definition

µ̂(x) =

∫
R
e−ixy dµy.

The Fourier coefficients of µ are µ̂(n), n ∈ Z.

Theorem 7.8. Let E ⊂ [0, 2π), E 6= [0, 2π), be a closed set and let µ ∈M(E). Then
the following are equivalent:

(1)
lim
n→∞

µ̂(n) = 0.

(2)
∞∑

n=−∞

µ̂(n)einx = 0 for all x ∈ [0, 2π) \ E.

We have for the measures µd on the Cantor sets Cd:

Theorem 7.9. Let µd, 0 < d < 1/2, be the Cantor measure as in Chapter 1. Then

lim
x→∞

µ̂d(x) = 0

if and only if 1/d is not a Pisot number.

More generally, one can prove that if 1/d is a Pisot number, then there is no
measure inM(Cd) whose Fourier transform would tend to zero at infinity.

The proof for the Cantor sets C1/N , N ∈ N, N ≥ 2, that they are U-sets and do
not carry measures with Fourier coefficients vanishing at infinity can be based
on the following property they possess: A set E ⊂ [0, π] is an H-set if there is a
non-empty open interval I ⊂ [0, 2π] and positive integers n1 < n2 < . . . such that
(nkE mod 2π) ∩ I = ∅ for all k.

Theorem 7.10. Every H-set E ⊂ [0, 2π) is a U-set. Moreover, for every measure
µ ∈M(E), the Fourier coefficients satisfy lim supn→∞ |µ̂(n)| > 0.
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We shall discuss the symmetric Cantor sets and measures on them. Let us first
recall the construction. For 0 < d < 1/2 we have the Cantor set Cd with dissection
ratio d:

Cd =
∞⋂
k=1

2k⋃
i=1

Ik,i.

Here the closed intervals Ik,i, i = 1, . . . , 2k, have length dk. As before, let µd be the
’natural’ probability measure onCd. This is the unique Borel measure µd ∈M(Cd)
which is uniformly distributed in the sense that

(7.2) µd(Ik,i) = 2−k for i = 1, . . . , 2k, k = 1, 2 . . . .

Recall that

Hsd Cd = µd and Hsd(Cd) = 1 with sd = log 2/ log(1/d).

In order to compute the Fourier transform of µd it is helpful to express µd as
a weak limit of finite linear combinations of Dirac measures indexed by binary
sequences. To do this we observe that

(7.3) Cd = {
∞∑
j=1

εj(1− d)dj−1 : εj = 0 or εj = 1}.

Let
Ek = {(ε1, . . . , εk) : εj = 0 or εj = 1},

a(ε) =
k∑
j=1

εj(1− d)dj−1 for ε = (εj) ∈ Ek,

and define
νk = 2−k

∑
ε∈Ek

δa(ε).

Then
νk → µd weakly as k →∞.

By the definition of the Fourier transform,

δ̂a(u) = e−iau for a, u ∈ R,

so

ν̂k(u) = 2−k
∑
ε∈Ek

δ̂a(ε)(u) = 2−k
∑
ε∈Ek

e−ia(ε)u = 2−k
∑
ε∈Ek

ei
∑k
j=1 εjuj

where uj = −(1− d)dj−1u. Here∑
ε∈Ek

ei
∑k
j=1 εjuj = Πk

j=1(1 + eiuj)
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as one can see by expanding the right hand side as a sum and checking that it
agrees with the left hand side. Thus

ν̂k(u) = Πk
j=1

(1 + eiuj)

2
= Πk

j=1e
iuj/2Πk

j=1 cos(uj/2) = e
∑k
j=1 iuj/2Πk

j=1 cos(uj/2),

where we have used the formula
1 + eix

2
= eix/2 cos(x/2).

Recalling the definition of uj we see that
k∑
j=1

iuj/2 =
k∑
j=1

−i(1− d)dj−1u/2 = −i(1− dk)u/2.

Therefore we obtain

ν̂k(u) = ei(1−d
k)u/2Πk

j=1 cos((1− d)dj−1u/2).

Letting k →∞we finally obtain

(7.4) µ̂d(u) = e−iu/2Π∞j=1 cos((1− d)dj−1u/2).

When d = 1/3 we have for the classical ternary Cantor set

µ̂1/3(u) = e−iu/2Π∞j=1 cos(3−ju).

It follows that µ̂1/3(u) does not tend to 0 as u tends to ∞; look at u = 3kπ, k =
1, 2, . . . .

We shall now show that if 1/d ≥ 3 is an integer, then there is no measure in
M(Cd) whose Fourier transform would tend to zero at infinity. The proof relies
on the fact that then Cd is an H-set, and Theorem 7.11 and its proof are valid for
all H-sets. That is, it also gives Theorem 7.10.

More precisely, letting I = (d, 1− d) and N = 1/d,

(7.5) [Nkx] 6∈ I for all x ∈ Cd, k = 1, 2, . . . ,

where for y ≥ 0, [y] stands for the fractional part of y, that is, [y] ∈ [0, 1) and
y − [y] ∈ N. To see this recall that by (7.3) Cd consists of points

x =
∞∑
j=1

εj(1− d)dj−1 = (N − 1)
∞∑
j=1

εjN
−j

where εj = 0 or εj = 1. Then

Nkx = (N − 1)
∞∑
j=1

εjN
k−j = (N − 1)(

k−1∑
j=0

εk−jN
j +

∞∑
j=1

εk+jN
−j).

Thus

[Nkx] = (N − 1)
∞∑
j=1

εk+jN
−j ∈ Cd ⊂ [0, 1] \ I.
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Theorem 7.11. If 1/d ≥ 3 is an integer, then for any µ ∈M(Cd), lim supn→∞ |µ̂(2πn)| >
0.

Proof. Suppose there would exist µ ∈M(2πCd) such that µ̂(k)→ 0 as k ∈ Z, |k| →
∞. Choose a function ϕ ∈ S(R) such that sptϕ ⊂ (2πd, 2π(1 − d)) and

∫
ϕ = 1.

Let again N = 1/d and define for j = 1, 2, . . . ,

ϕj(x) = ϕ(N jx mod 2π) for x ∈ [0, 1].

Then by (7.5) sptϕj ∩ Cd = ∅, and by the Fourier inversion formula

ϕj(x) =
∑
k∈Z

ϕ̂(k)eixN
jk, x ∈ [0, 1],

so ϕ̂j(N jk) = ϕ̂(k) and the other Fourier coefficients of ϕj vanish. Therefore by
the Parseval formula for any j and any m > 1,

0 =

∫
ϕj dµ =

∑
k∈Z

ϕ̂j(k)µ̂(k)

=
∑
k∈Z

ϕ̂j(N jk)µ̂(N jk) =
∑
k∈Z

ϕ̂(k)µ̂(N jk)

= ϕ̂(0)µ̂(0) +
∑

1≤|k|≤m

ϕ̂(k)µ̂(N jk) +
∑
|k|>m

ϕ̂(k)µ̂(N jk).

The first term is µ(Cd) > 0. For the last term we have

|
∑
|k|>m

ϕ̂(k)µ̂(N jk)| ≤ µ(Cd)
∑
|k|>m

|ϕ̂(k)|,

which we can make arbitrarily small choosing m large, since ϕ ∈ S(R). For any
m we have for the middle term

|
∑

1≤|k|≤m

ϕ̂(k)µ̂(N jk)| ≤ 2m sup
|l|≥Nj ,l∈Z

|µ̂(l)|

which goes to zero as j → ∞. It follows that µ(Cd) = 0, which is a contradiction.
�

Proof of Theorem 7.9. Let θ = 1/d. Suppose that µ̂d(u) does not tend to 0 at infinity.
Then there exist δ > 0 and an increasing sequence (uk) such that uk →∞ and

|µ̂d(uk)| > δ

for all k. We can write
(1− d)uk/2 = λkθ

mk

where 1 ≤ λk < θ and (mk) is an increasing sequence of positive integers. Re-
placing the sequence (λk) by a subsequence if needed we can assume that λk →
λ, 1 ≤ λ ≤ θ. By (7.4),

δ < |µ̂d(uk)| = |Π∞j=1 cos((1− d)dj−1uk/2)|
= |Π∞j=1 cos(λkθ

mk−j+1)| ≤ |Πmk
j=0 cos(λkθ

j)|,
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which gives
Πmk
j=0(1− sin(λkθ

j)2) ≥ δ2.

Using the elementary inequality x ≤ − log(1− x) for 0 < x < 1 this yields
mk∑
j=0

sin2(λkθ
j) ≤ log(1/δ2).

Hence for l > k,
mk∑
j=0

sin2(λlθ
j) ≤

ml∑
j=0

sin2(λlθ
j) ≤ log(1/δ2).

Keeping k fixed and letting l→∞we get
mk∑
j=0

sin2(λθj) ≤ log(1/δ2),

and letting k →∞,
∞∑
j=0

sin2(λθj) ≤ log(1/δ2).

Hence θ = 1/d is a Pisot number.
To prove the converse, suppose that θ = 1/d is a Pisot number. Then there

exists a real number λ 6= 0 such that
∞∑
j=0

sin2(λθj) <∞.

Reversing the above argument this implies that

p = Π∞j=0| cos(λθj)| > 0.

Using the formula (7.4) we get for uk = λθk/(π(1− d)),

|µ̂d(uk)| = |Π∞j=1 cos(λdj−1θk)| = |Πk
j=1 cos(λθj)||Π∞j=0 cos(λθ−j)|

≥ p|Π∞j=0 cos(λθ−j)| = pq,

where q > 0 by similar calculus as above;
∑∞

j=0 sin2(λθ−j) <∞ since θ > 1. Hence
µ̂d(u) does not tend to 0 at infinity which proves the theorem. �

Because of Theorems 7.9 and 7.8, Cd is an M-set if 1/d is not a Pisot number. In
fact, we have also the converse: Cd is a set of uniqueness if and only if 1/d is a
Pisot number, see Kechris or the book of Kahane and Salem for a proof. Theorem
7.9 gives an indication that this converse might be true, but it is not enough to
prove it. In the book of Kahane and Salem one also finds: there is µ ∈ M(Cd)
such that limu→∞ µ̂(u) = 0 if and only if 1/d is not a Pisot number. But even this
is not quite enough to prove that Cd is a U-set if 1/d is not a Pisot number.
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8. FOURIER TRANSFORM AND HAUSDORFF DIMENSION

Here we just quickly see how Fourier transforms of measures are related and
can be applied to Hausdorff dimension. For the background on Fourier trans-
form see, for example, J. Duoandikoetxea: Fourier Analysis, Graduate Studies in
Mathematics Volume 29, American Mathematical Society, 2001, and L. Grafakos:
Classical Fourier Analysis, Springer–Verlag, 2008.

The Fourier transform of f ∈ L1(Rn) is from now on defined by

(8.1) F(f)(ξ) = f̂(ξ) =

∫
f(x)e−2πiξ·x dx, ξ ∈ Rn.

The Fourier transform of a finite Borel measure µ on Rn is defined by

(8.2) µ̂(ξ) =

∫
e−2πiξ·x dµx, ξ ∈ Rn.

Then f̂ and µ̂ are a bounded continuous functions.
Recall from Chapter 1 the s-energy of µ ∈M(Rn):

Is(µ) =

∫∫
|x− y|−s dµx dµy =

∫
ks ∗ µ dµ,

where ks is the Riesz kernel:

ks(x) = |x|−s, x ∈ Rn.

We had

Theorem 8.1. For a closed set A ⊂ Rn,

dimA = sup{s : there is µ ∈M(A) such that Is(µ) <∞}.

We can write the energy with Fourier transform which immediately gives the
connection between Fourier transform and Hausdorff dimension.

Theorem 8.2. Let µ ∈M(Rn) and 0 < s < n. Then

(8.3) Is(µ) = γ(n, s)

∫
|µ̂(x)|2|x|s−n dx.

Here γ(n, s) is a positive constant. It comes from the identity

k̂s = γ(n, s)kn−s.

As ks does belong to any Lp, this must be interpreted in the distributional sense;
it means that ∫

ksϕ̂ =

∫
γ(n, s)kn−sϕ

for all smooth functions ϕ which together with their derivatives tend to zero very
quickly at infinity, they are called Schwartz functions.

Formally Theorem 8.3 follows easily by the basic Parseval and convolution for-
mulas:

Is(µ) =

∫
ks ∗ µ dµ =

∫
k̂s ∗ µµ̂ =

∫
k̂s|µ̂|2 = γ(n, s)

∫
|µ̂(x)|2|x|s−n dx,
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but some further arguments are needed since k̂s = γ(n, s)kn−s only holds in the
distributional sense. They are given in [Ma].

Recall one half one Marstrand’s projections theorem 2.3:
Let A ⊂ R2 be a Borel set. If dimA > 1, then

L1(pθ(A)) > 0 for almost all θ ∈ [0, π).

Let us give a simple proof for this with Fourier transform:
Choose by Theorems 8.1 and 8.3 a measure µ ∈M(A) such that

∫
|x|−1|µ̂(x)|2 dx <

∞. Letting again µθ(B) = µ(p−1
θ (B)), we see directly from the definition of the

Fourier transform that µ̂θ(t) = µ̂(t(cos θ, sin θ)) for t ∈ R, θ ∈ [0, π). Integrating in
polar coordinates we obtain∫ π

0

∫ ∞
−∞
|µ̂θ(t)|2 dt dθ = 2

∫ π

0

∫ ∞
0

|µ̂(t(cos θ, sin θ))|2 dt dθ = 2

∫
|x|−1|µ̂(x)|2 dx <∞.

Thus for almost all θ ∈ [0, π), µ̂θ ∈ L2(R) which means that µθ is absolutely
continuous with L2 density and hence L1(Pe(A)) > 0. Here we used the fact
Fourier transform can be extended to L2 as an isometry.

Another application of Fourier transform is to distance sets. The distance set of
A ⊂ Rn is

D(A) = {|x− y| : x, y ∈ A} ⊂ [0,∞).

The following Falconer’s conjecture seems plausible:

Conjecture 8.3. If n ≥ 2 and A ⊂ Rn is a Borel set with dimA > n/2, then
L1(D(A)) > 0.

This is open in all dimensions n ≥ 2. In R it is false; it is easy to construct
examples of compact sets A ⊂ R with dimA = 1 and L1(D(A)) = 0.

The following partial result was proved by Falconer in 1985:

Theorem 8.4. Let A ⊂ Rn, n ≥ 2, be a Borel set. If dimA > (n + 1)/2, then
L1(D(A)) > 0.

The proof is a bit more involved than the one above, but it uses a similar tech-
nique as with the projections; we map a measure µ ∈ M(A) to its distance mea-
sure δ(µ) ∈M(D(A)) defined for Borel sets B ⊂ R by

δ(µ)(B) =

∫
µ({y : |x− y| ∈ B}) dµx.

In other words, δ(µ) is the image of µ×µ under the distance map (x, y)→ |x− y|,
or equivalently, for any continuous function ϕ on R,∫

ϕdδ(µ) =

∫∫
ϕ(|x− y|) dµx dµy.

Obviously,

(8.4) spt δ(µ) ⊂ D(sptµ).

Then one can show that δ(µ) is absolutely continuous if I(n+1)/2(µ) < ∞, from
which Theorem 8.4 follows.
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9. ANALYST’S TRAVELING SALESMAN THEOREM

The classical traveling salesman problem asks to find the shortest path connect-
ing given N points in the plane: the traveling salesman wants to visit N towns as
quickly as possible. This very difficult open problem is relevant for computer sci-
ence. In these lectures I discuss the continuous version: a finite set is replaced by
an arbitrary compact subset of the plane and we ask when it is possible to cover
this set with a rectifiable curve and how to estimate the length of the shortest such
curve. Peter Jones gave a nice answer to this question in 1990 which has turned
out to be very influential in many areas of analysis; complex analysis, potential
theory and harmonic analysis.

The lectures will follow Bishop and Peres [BP], Chapter 10.
We now denote byDn, n ∈ Z, the grid of closed dyadic squaresQ of side-length

l(Q) = 2−n, and we set D = ∪n∈ZDn. Using the notation of [BP], we denote the
diameter of as set A by |A|. For λ > 0, λQ is the square concentric with Q with
side-length λl(Q). If E ⊂ R2, we set

L(E) = {L : L is line in the plane such that L ∩ E 6= ∅.}
For E ⊂ R2 and for any square Q we define Jones’s βE(Q) number by

βE(Q) = |Q|−1 inf
L∈L(Q)

sup
z∈E∩Q

dist(z, L).

Then the theorem of Jones is

Theorem 9.1. Let E ⊂ R2 be compact. Then there is a rectifiable curve (curve of
finite length) Γ containing E if and only if

β(E) := |E|+
∑
Q∈D

βE(3Q)2|Q| <∞.

Moreover, the length of the shortest such curve is comparable to β(E).

Notice that βE(Q) measures how well E can be approximated by lines inside
Q; βE(Q) = 0 if and only E lies on a line, and βE(Q) ≈ 1 if E is spread all over Q.
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10. REMOVABLE SETS FOR BOUNDED ANALYTIC

This topic is discussed in [Ma] and in particular in
X. Tolsa: Analytic Capacity, The Cauchy Transform, and Non-homogeneous

Calderón–Zygmund Theory, Birkhäuser, 2014.
Here we investigate a problem in classical complex analysis: for which com-

pact sets K ⊂ C is it true that every bounded complex analytic function in the
complement of K can be analytically extended over K?

Definition 10.1. A compact set K ⊂ C is removable (for bounded analytic func-
tions) if the following is true: if K ⊂ U ⊂ C, U is open, f : U \K → C is bounded
and analytic, then there is a bounded analytic function g : U → C such that
g|K = f .

It is easy to see that removable sets cannot have interior points which implies
that the extension is unique. Moreover, by the Riemann mapping theorem re-
movable sets are totally disconnected.

The first main tool is the Cauchy integral formula:

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ,

where Γ is a smooth closed Jordan curve, f is analytic in some some open domain
containing Γ, and z is a point in the open bounded domain G whose boundary
is Γ. If Γ′ ⊂ G is another smooth closed Jordan curve, f is analytic in some some
open domain containing Γ and Γ′ (but not necessarily in all of G) and z is a point
in the domain bounded by Γ and Γ′, then this formula takes the form

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ − 1

2πi

∫
Γ′

f(ζ)

ζ − z
dζ.

Let us see how this can be used to prove Riemann’s classical result that iso-
lated singularities are removable, that is, singletons are removable sets: let f be
bounded and analytic in U \ {z0} with U open containing z0. Choose 0 < r < R
such that B(z0, R) ⊂ U . Then by the Cauchy integral formula for z ∈ U(z0, R) \
B(z0, r) (here U(z0, R) is the open disc)

f(z) =
1

2πi

∫
∂B(z0,R)

f(ζ)

ζ − z
dζ − 1

2πi

∫
∂B(z0,r)

f(ζ)

ζ − z
dζ.

When r → 0, the second integral tends to 0 because of the boundedness of f .
Then the first integral gives the analytic extension of f to z0.

A somewhat similar application of the Cauchy integral formula shows that we
could always take U = C in the definition. Thus we have by Liouville’s theorem

Theorem 10.2. A compact set K ⊂ C is removable if and only every bounded
analytic function f : C \K → C is constant.

What about the Hausdorff dimension of removable and non-removable sets?
The first part of the following theorem is due to Painlevé from 1888 and the sec-
ond part to Frostman from the 1930s:
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Theorem 10.3. Let K ⊂ C be compact.
(1) IfH1(K) = 0, then K is removable.
(2) If dimK) > 1, then K is not removable.

The proof of (1) is again a simple application of the Cauchy integral formula
and the definition of the Hausdorff measure. Or rather the definition of Haus-
dorff measure zero for which we don’t need the measure itself. Notice that Painlevé’s
result is older than Hausdorff measures. The proof of (2) is by Frostman’s lemma.
It gives us µ ∈ M(K) such that the potential

∫
|y − z|−1 dµy, z ∈ C, is bounded.

Then f, f(z) =
∫

(ζ − z)−1 dµζ, z ∈ C \ K, is a non-constant bounded analytic
function in C \K.

After this, rather easy, theorem we have problems only with compact sets K
withH1(K) > 0 and dimK = 1. But this turned out to be a very difficult problem.
Fortunately it was solved by Tolsa in 2003. I now describe some steps leading to
this solution.

First, the sufficient condition H1(K) = 0 is not necessary. Vitushkin provided
the example in the 1959, which was rather complicated. In about 1970 Garnett,
and independently Ivanov, showed that K = C(1/4) also is removable although
H1(C(1/4)) > 0. Secondly, Calderón proved in 1977 that if K is a subset of some
rectifiable curve, then K is removable if and only if H1(K) = 0. Thirdly, David
proved in 1998 that if H1(K) < ∞, then K is removable if and only if H1(Γ ∩
K) = 0 for every rectifiable curve Γ. Finally, Tolsa’s full characterization is the
following:

Theorem 10.4. A compact set K ⊂ C is NOT removable if and only there is a
finite Borel measure µ ∈ M(K) such that µ(B(z, r)) ≤ r for all z ∈ C and r > 0
and ∫∫∫

c(x, y, z)2 dµx dµy dµz <∞.

The non-negative number c(x, y, z) is called the Menger curvature of the triple
(x, y, z) ∈ C3. It is defined as c(x, y, z) = 1/R where R is the radius of the circle
passing through x, y and z. This circle is a line if x, y and z are collinear. Then,
and only then, c(x, y, z) = 0. So c, like β in the previous chapter, measures ap-
proximability by lines.

The reason why Menger curvature is useful is its connection to the Cauchy
kernel 1/z given by the formula due to Melnikov from 1995: for z1, z2, z3 ∈ C,

c(z1, z2, z3)2 =
∑
σ

1

(zσ(1) − zσ(3))(zσ(2) − zσ(3))

where σ runs through all six permutations of {1, 2, 3}.
The proof of this is rather easy plane geometry: one can first prove a more than

2000 years old theorem of the Greeks saying that if A is the area of the triangle
with vertices z1, z2, z3, then c(z1, z2, z3) equals 4A/(|z1 − z2||z1 − z3||z2 − z3|), and
then one can show that the square of this equals the right hand side. For the latter
it might help first to normalize to z1 = 0 and z2 = x ∈ R.
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