Fractal sets in analysis, Exercise 9, 22.4.2015

1. Let μ be the measure on the space \mathcal{L} of lines in \mathbb{R}^2 as defined by Bishop and Peres in Chapter 10: for $G \subset \mathcal{L}$, $\mu(G)$ is the Lebesgue measure of the set of the points $(r, \theta), 0 \leq r < \infty, \theta \in (0, 2\pi)$, for which $re^{i\theta}$ is the closest point to the origin on some line of G. Show that

$$\mu(G) = \int_0^{\pi} \mathcal{L}^1(\{t \in \mathbb{R} : L_{\theta,t} \in G\}) \, d\theta,$$

if $\{(\theta, t) : L_{\theta,t} \in G\}$ is Lebesgue measurable. Here $L_{\theta,t} = \{u(-\sin\theta, \cos\theta) + t(\cos\theta, \sin\theta) : u \in \mathbb{R}\}$.

2. Let $K \subset \mathbb{R}^2$ be convex. Show that $\mu(L(K))$ is the length of the boundary curve Γ of K. You may use the Crofton formula for Γ .

3. Let *R* be a rectangle with sidelengths 1 and β . Compute the μ measure of the set of lines meeting both sides of *R* of length β .

4. For $E \subset \mathbb{R}^2$, $x \in \mathbb{R}^2$ and r > 0, let

$$\beta_E(x,r) = r^{-1} \inf_{L \in L(B(x,r))} \sup_{z \in E \cap B(x,r)} dist(z,L).$$

Prove that

$$\sum_{Q \in \mathcal{D}} \beta_E (3Q)^2 |Q| \approx \int_0^\infty \int_{\mathbb{R}^2} \frac{\beta_E(x,r)^2}{r^2} \, dx \, dr.$$

5. Let $E \subset \mathbb{R}^2$ be a compact 1-dimensional AD-regular (recall Chapter 1) set. Show that

$$\sum_{Q \in \mathcal{D}} \beta_E (3Q)^2 |Q| \approx \int_0^\infty \int_E \frac{\beta_E(x,r)^2}{r} \, d\mathcal{H}^1 x \, dr.$$

6. Let $K \subset \mathbb{R}^2$ be a compact self-similar set (recall Definition 4.8). Show that either K is a subset of some line or there is c > 0 such that $\beta_K(x, r) > c$ for all $x \in K, 0 < r < 1$.