1. Let μ be the measure on the space \mathcal{L} of lines in \mathbb{R}^{2} as defined by Bishop and Peres in Chapter 10: for $G \subset \mathcal{L}, \mu(G)$ is the Lebesgue measure of the set of the points $(r, \theta), 0 \leq r<\infty, \theta \in(0,2 \pi)$, for which $r e^{i \theta}$ is the closest point to the origin on some line of G. Show that

$$
\mu(G)=\int_{0}^{\pi} \mathcal{L}^{1}\left(\left\{t \in \mathbb{R}: L_{\theta, t} \in G\right\}\right) d \theta
$$

if $\left.\left\{(\theta, t): L_{\theta, t} \in G\right\}\right)$ is Lebesgue measurable. Here $L_{\theta, t}=\{u(-\sin \theta, \cos \theta)+$ $t(\cos \theta, \sin \theta): u \in \mathbb{R}\}$.
2. Let $K \subset \mathbb{R}^{2}$ be convex. Show that $\mu(L(K))$ is the length of the boundary curve Γ of K. You may use the Crofton formula for Γ.
3. Let R be a rectangle with sidelengths 1 and β. Compute the μ measure of the set of lines meeting both sides of R of length β.
4. For $E \subset \mathbb{R}^{2}, x \in \mathbb{R}^{2}$ and $r>0$, let

$$
\beta_{E}(x, r)=r^{-1} \inf _{L \in L(B(x, r))} \sup _{z \in E \cap B(x, r)} \operatorname{dist}(z, L) .
$$

Prove that

$$
\sum_{Q \in \mathcal{D}} \beta_{E}(3 Q)^{2}|Q| \approx \int_{0}^{\infty} \int_{\mathbb{R}^{2}} \frac{\beta_{E}(x, r)^{2}}{r^{2}} d x d r
$$

5. Let $E \subset \mathbb{R}^{2}$ be a compact 1-dimensional AD-regular (recall Chapter 1) set. Show that

$$
\sum_{Q \in \mathcal{D}} \beta_{E}(3 Q)^{2}|Q| \approx \int_{0}^{\infty} \int_{E} \frac{\beta_{E}(x, r)^{2}}{r} d \mathcal{H}^{1} x d r
$$

6. Let $K \subset \mathbb{R}^{2}$ be a compact self-similar set (recall Definition 4.8). Show that either K is a subset of some line or there is $c>0$ such that $\beta_{K}(x, r)>c$ for all $x \in K, 0<r<1$.
