Fractal sets in analysis, Exercise 6, 11.3.2015

1. Prove that for any continuous function $f:[a, b] \rightarrow \mathbb{R}$, the graph G_{f} is closed and $\mathcal{L}^{2}\left(G_{f}\right)=0$.
2. Prove that if $f:[a, b] \rightarrow \mathbb{R}$ is Lipschitz, then $\mathcal{H}^{1}\left(G_{f}\right)<\infty$.

Hint: Show that the projection $p: G_{f} \rightarrow \mathbb{R}, p(x, y)=x$, is injective with Lipschitz inverse.
3. Let f be the Cantor singular function;

$$
f(x)=\mu_{1 / 3}([0, x]), \quad x \in[0,1],
$$

where $\mu_{1 / 3}$ is the Cantor measure on the $1 / 3$ Cantor set $C_{1 / 3}$. What are the Hausdorff and Minkowski dimensions of the graph of f ?
4. Prove that the Weierstrass function $f_{\alpha, b}$ is differentiable, if $\alpha>1$.
5. Construct a continuous function $f:[0,1] \rightarrow \mathbb{R}$ whose graph has upper Minkowski dimension 2, and, if you want, even Hausdorff dimension 2.

