Fractal sets in analysis, Exercise 5, 25.2.2015

1. Prove that the Hausdorff metric d_H really is a metric.

2. Is it true that if K_i , i = 1, 2, ..., and K are compact subsets of \mathbb{R} and $d_H(K_i, K) \rightarrow 0$, as $i \rightarrow \infty$, then dim $K_i \rightarrow \dim K$? If not, could it be that always dim $K \leq \liminf_{i\to\infty} \dim K_i$?

3. Prove that the metric space $(\mathcal{K}(\mathbb{R}^n), d_H)$ is separable, that is, it has a countable dense subset. Hint: Study finite subsets.

4. Prove that the metric space $(\mathcal{P}(Q), d_L)$ is separable, where Q is the unit cube $\{x \in \mathbb{R}^n : 0 \le x_i \le 1 \ \forall i = 1, ..., n\}.$

5. Prove that the mapping *F* on page 16 of the lecture notes is a contraction.

6. Prove that the mapping *M* on page 16 of the lecture notes is a contraction.