Fractal sets in analysis, Exercise 7, 18.3.2015

1. Prove the Riemann-Lebesgue lemma: if $f:[0,2 \pi] \rightarrow \mathbb{C}$ is Lebesgue integrable, then $\lim _{|n| \rightarrow \infty} \widehat{f}(n)=0$.
2. Prove that if $f:[0,2 \pi] \rightarrow \mathbb{C}$ is continuous with $f(0)=f(2 \pi)$ and $\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|<$ ∞, then the partial sums $\sum_{n=-N}^{N} \widehat{f}(n) e^{i n x}$ converge uniformly to f, as $N \rightarrow \infty$.
3. Prove that if $f:[0,2 \pi] \rightarrow \mathbb{C}$ is continuous with $f(0)=f(2 \pi)$ and $\sum_{n=-\infty}^{\infty}|\widehat{f}(n)|<$ ∞ and $\mu \in \mathcal{M}([0,2 \pi])$, then $\int_{[0,2 \pi]} f d \mu=\sum_{n=-\infty}^{\infty} \widehat{f}(-n) \widehat{\mu}(n)$.
4. Prove that if $\mu \in \mathcal{M}([0,2 \pi])$, then $\widehat{\mu}$ is a Lipschitz function.
5. Let $f, g: \mathbb{R} \rightarrow \mathbb{C}$ be 2π-periodic functions which belong to $L^{1}([0,2 \pi])$. Compute the Fourier coefficients of the convolution $f * g$,

$$
f * g(x)=\int_{0}^{2 \pi} f(x-y) g(y) d y
$$

in terms of the Fourier coefficients of f and g. Do the same for the product $f g$ assuming in addition that $f, g \in L^{2}([0,2 \pi]), \sum_{n=-\infty}^{\infty}|\widehat{f}(n)|<\infty$ and $\sum_{n=-\infty}^{\infty}|\widehat{g}(n)|<$ ∞.

